lambdafaker is a versatile Python package that empowers you to effortlessly create realistic but synthetic payload data and trigger your lambda function with it. If you need to generate test data for software development, this tool simplifies the process with an intuitive schema definition in YAML format.
Schema Definition: Define your target schema using a simple YAML file. Specify the structure of your lambda payload attribute names and fake data generation code.
Faker and Randomization: Leverage the power of the Faker library and random data generation to create authentic-looking fake data that mimics real-world scenarios.
pip install lambdafakerversion: 1
config:
locale: en_US # faker locale Default:en_US
on_error: RAISE_ERROR # RAISE_ERROR, SKIP Default:RAISE_ERROR
python_import: # Optional, list of python packages to use in data generation
- datetime
aws:
region: us-east-1
credentials_profile: default #the profile name in your local .aws/config file Default:default
lambda_function:
function_name: my_function
invocation_count: 10 # Optional Default:1
invocation_type: Event # Event / RequestResponse Default:Event
batch: 1 # Optional Default:1
sleep: 1000 # Optional Default:0 No Sleep
payload:
first_name: fake.first_name()
last_name: fake.last_name()
is_alive: fake.pybool()
age: fake.random_int(18, 90)
dob: fake.date_of_birth()
address:
street_address: fake.street_address()
city: fake.city()
state: fake.state_abbr()
postal_code: fake.postcode()
phone_numbers:
- type: "\"home\""
number: fake.phone_number()
- type: "\"office\""
number: fake.phone_number()
children:
- fake.first_name()
- fake.first_name()
- fake.first_name()
from lambdafaker import lambdafaker
lambdafaker.invoke_lambda("tests/test_function.yaml")You can use lambdafaker in your terminal for adhoc needs or shell script to automate lambda function invocation.
Faker custom providers and custom functions are not supported in CLI.
lambdafaker --config test_function.yamlWith Lambda Faker, you have the flexibility to provide your own custom functions to generate column data. This advanced feature empowers developers to create custom fake data generation logic that can pull data from a database, API, file, or any other source as needed. You can also supply multiple functions in a list, allowing for even more versatility. The custom function you provide should return a single value, giving you full control over your synthetic data generation.
from lambdafaker import lambdafaker
from faker import Faker
from faker_education import SchoolProvider #import custom faker provider
fake = Faker()
def get_level():
return f"level {fake.random_int(1, 5)}"
lambdafaker.invoke_lambda("test_function.yaml", fake_provider=SchoolProvider, custom_function=get_level)
#multiple fake provider or custom function in a list is also worksAdd get_level() function and custom faker provider to your yaml file
version: 1
lambda_function:
function_name: my_function
payload:
first_name: fake.first_name()
last_name: fake.last_name()
is_alive: fake.pybool()
age: fake.random_int(18, 90)
dob: fake.date_of_birth()
level: get_level() # custom function
school: fake.school_name() # customer faker provider
https://faker.readthedocs.io/en/master/providers.html#
https://github.com/necatiarslan/aws-lambda-faker/issues/new
- Aws Profile support
Follow me on linkedin to get latest news
https://www.linkedin.com/in/necati-arslan/
Thanks,
Necati ARSLAN
necatia@gmail.com