Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
342 changes: 342 additions & 0 deletions articles/binary-tree-from-preorder-and-inorder-traversal.md
Original file line number Diff line number Diff line change
Expand Up @@ -912,3 +912,345 @@ class Solution {

- Time complexity: $O(n)$
- Space complexity: $O(n)$ for recursion stack.

---

## 4. Morris Traversal

::tabs-start

```python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
head = TreeNode(None)
curr = head
i, j, n = 0, 0, len(preorder)
while i < n and j < n:
# Go right and then as far left as possible
curr.right = TreeNode(preorder[i], right = curr.right)
curr = curr.right
i += 1
while i < n and curr.val != inorder[j]:
curr.left = TreeNode(preorder[i], right=curr)
curr = curr.left
i += 1
j += 1
while curr.right and j < n and curr.right.val == inorder[j]:
prev = curr.right
curr.right = None
curr = prev
j += 1

return head.right
```

```java
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
TreeNode head = new TreeNode(0);
TreeNode curr = head;
int i = 0, j = 0, n = preorder.length;

while (i < n && j < n) {
curr.right = new TreeNode(preorder[i], null, curr.right);
curr = curr.right;
i++;
while (i < n && curr.val != inorder[j]) {
curr.left = new TreeNode(preorder[i], null, curr);
curr = curr.left;
i++;
}
j++;
while (curr.right != null && j < n && curr.right.val == inorder[j]) {
TreeNode prev = curr.right;
curr.right = null;
curr = prev;
j++;
}
}
return head.right;
}
}
```

```cpp
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
TreeNode* head = new TreeNode(0);
TreeNode* curr = head;
int i = 0, j = 0, n = preorder.size();

while (i < n && j < n) {
curr->right = new TreeNode(preorder[i], nullptr, curr->right);
curr = curr->right;
i++;
while (i < n && curr->val != inorder[j]) {
curr->left = new TreeNode(preorder[i], nullptr, curr);
curr = curr->left;
i++;
}
j++;
while (curr->right && j < n && curr->right->val == inorder[j]) {
TreeNode* prev = curr->right;
curr->right = nullptr;
curr = prev;
j++;
}
}
return head->right;
}
};
```

```javascript
/**
* Definition for a binary tree node.
* class TreeNode {
* constructor(val = 0, left = null, right = null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/

class Solution {
/**
* @param {number[]} preorder
* @param {number[]} inorder
* @return {TreeNode}
*/
buildTree(preorder, inorder) {
let head = new TreeNode(null);
let curr = head;
let i = 0, j = 0, n = preorder.length;

while (i < n && j < n) {
curr.right = new TreeNode(preorder[i], null, curr.right);
curr = curr.right;
i++;
while (i < n && curr.val !== inorder[j]) {
curr.left = new TreeNode(preorder[i], null, curr);
curr = curr.left;
i++;
}
j++;
while (curr.right && j < n && curr.right.val === inorder[j]) {
let prev = curr.right;
curr.right = null;
curr = prev;
j++;
}
}
return head.right;
}
}
```

```csharp
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
public TreeNode BuildTree(int[] preorder, int[] inorder) {
TreeNode head = new TreeNode(0);
TreeNode curr = head;
int i = 0, j = 0, n = preorder.Length;

while (i < n && j < n) {
curr.right = new TreeNode(preorder[i], null, curr.right);
curr = curr.right;
i++;
while (i < n && curr.val != inorder[j]) {
curr.left = new TreeNode(preorder[i], null, curr);
curr = curr.left;
i++;
}
j++;
while (curr.right != null && j < n && curr.right.val == inorder[j]) {
TreeNode prev = curr.right;
curr.right = null;
curr = prev;
j++;
}
}
return head.right;
}
}
```

```go
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func buildTree(preorder []int, inorder []int) *TreeNode {
head := &TreeNode{}
curr := head
i, j, n := 0, 0, len(preorder)

for i < n && j < n {
curr.Right = &TreeNode{Val: preorder[i], Right: curr.Right}
curr = curr.Right
i++
for i < n && curr.Val != inorder[j] {
curr.Left = &TreeNode{Val: preorder[i], Right: curr}
curr = curr.Left
i++
}
j++
for curr.Right != nil && j < n && curr.Right.Val == inorder[j] {
prev := curr.Right
curr.Right = nil
curr = prev
j++
}
}
return head.Right
}
```

```kotlin
/**
* Example:
* var ti = TreeNode(5)
* var v = ti.`val`
* Definition for a binary tree node.
* class TreeNode(var `val`: Int) {
* var left: TreeNode? = null
* var right: TreeNode? = null
* }
*/
class Solution {
fun buildTree(preorder: IntArray, inorder: IntArray): TreeNode? {
val head = TreeNode(0)
var curr: TreeNode? = head
var i = 0
var j = 0
val n = preorder.size

while (i < n && j < n) {
curr!!.right = TreeNode(preorder[i], null, curr.right)
curr = curr.right
i++
while (i < n && curr!!.`val` != inorder[j]) {
curr.left = TreeNode(preorder[i], null, curr)
curr = curr.left
i++
}
j++
while (curr!!.right != null && j < n && curr.right!!.`val` == inorder[j]) {
val prev = curr.right
curr.right = null
curr = prev
j++
}
}
return head.right
}
}
```

```swift
/**
* Definition for a binary tree node.
* public class TreeNode {
* public var val: Int
* public var left: TreeNode?
* public var right: TreeNode?
* public init() { self.val = 0; self.left = nil; self.right = nil; }
* public init(_ val: Int) { self.val = val; self.left = nil; self.right = nil; }
* public init(_ val: Int, _ left: TreeNode?, _ right: TreeNode?) {
* self.val = val
* self.left = left
* self.right = right
* }
* }
*/
class Solution {
func buildTree(_ preorder: [Int], _ inorder: [Int]) -> TreeNode? {
let head = TreeNode(0)
var curr: TreeNode? = head
var i = 0, j = 0
let n = preorder.count

while i < n && j < n {
curr!.right = TreeNode(preorder[i], nil, curr!.right)
curr = curr!.right
i += 1

while i < n && curr!.val != inorder[j] {
curr!.left = TreeNode(preorder[i], nil, curr)
curr = curr!.left
i += 1
}

j += 1
while curr!.right != nil && j < n && curr!.right!.val == inorder[j] {
let prev = curr!.right
curr!.right = nil
curr = prev
j += 1
}
}

return head.right
}
}
```

::tabs-end

### Time & Space Complexity

* Time complexity: $O(n)$
* Space complexity:
* $O(1)$ extra space.
* $O(n)$ for the output tree.
Loading