A Model Context Protocol (MCP) server providing semantic search and intelligent access to SAP AI Core documentation.
This MCP server enables AI assistants like Claude to search, retrieve, and understand SAP AI Core documentation efficiently. It provides semantic search capabilities across the entire AI Core documentation repository from SAP-docs/sap-artificial-intelligence.
- Semantic Search: Intelligent search across all SAP AI Core documentation
- Category Filtering: Search within specific areas (administration, development, integration, concepts)
- Document Retrieval: Get complete documentation pages with table of contents
- Topic-Specific Documentation: Quick access to documentation for specific AI Core topics
- Relevance Scoring: Results ranked by relevance to your query
- Node.js 20.0.0 or higher
- npm or yarn
- Clone this repository:
git clone <repository-url>
cd dlwr-dnl-ai-core-documentation-mcp- Install dependencies:
source ~/.zshrc && nvm use
npm install- Clone the SAP AI Core documentation as a git submodule:
git submodule add https://github.com/SAP-docs/sap-artificial-intelligence.git docs/sap-artificial-intelligence
git submodule update --init --recursive- Build the server:
npm run buildAdd to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"sap-ai-core-docs": {
"command": "node",
"args": [
"/absolute/path/to/dlwr-dnl-ai-core-documentation-mcp/build/index.js"
]
}
}
}To use a different documentation location:
{
"mcpServers": {
"sap-ai-core-docs": {
"command": "node",
"args": [
"/absolute/path/to/dlwr-dnl-ai-core-documentation-mcp/build/index.js"
],
"env": {
"SAP_AI_CORE_DOCS_PATH": "/path/to/custom/docs"
}
}
}
}Semantically search SAP AI Core documentation.
Parameters:
query(required): Search query stringcategory(optional): Filter by category ('all', 'administration', 'development', 'integration', 'concepts')limit(optional): Maximum results (1-50, default: 10)
Example:
Search for "model training deployment best practices"
Retrieve complete content of a specific documentation page.
Parameters:
path(required): Relative path to document (from search results)
Example:
Get document at path "docs/sap-ai-core/getting-started.md"
Get comprehensive documentation for a specific SAP AI Core topic.
Parameters:
topic_name(required): Name of the AI Core topic
Example:
Get documentation for "Model Training"
List all available documentation categories and top documents.
Example:
Show all available documentation categories
dlwr-dnl-ai-core-documentation-mcp/
├── src/
│ ├── index.ts # Entry point
│ ├── server.ts # MCP server implementation
│ ├── types/
│ │ └── index.ts # TypeScript type definitions
│ ├── indexer/
│ │ ├── markdown-parser.ts # Markdown document parser
│ │ └── document-index.ts # Document indexing & search
│ └── tools/
│ ├── search.ts # Search tool implementation
│ ├── get-document.ts # Document retrieval tool
│ ├── get-topic.ts # Topic documentation tool
│ └── list-categories.ts # Category listing tool
├── docs/
│ └── sap-artificial-intelligence/ # SAP AI Core docs (git submodule)
├── build/ # Compiled JavaScript output
├── package.json
├── tsconfig.json
└── README.md
# Build once
npm run build
# Build and watch for changes
npm run watch
# Run the server directly
npm run devTest the server using the MCP Inspector:
npx @modelcontextprotocol/inspector node build/index.jsThe server indexes all markdown files from the SAP AI Core documentation repository on startup:
- Parsing: Uses
unifiedandremarkto parse markdown with frontmatter - Extraction: Extracts metadata, headings, sections, and keywords
- Indexing: Creates a searchable index using Fuse.js for fuzzy semantic search
- Categorization: Automatically categorizes documents based on folder structure
- Multi-field search: Searches across titles, headings, content, and keywords
- Weighted scoring: Titles and keywords weighted higher than content
- Fuzzy matching: Handles typos and partial matches
- Context extraction: Returns relevant excerpts around matched terms
- AI Core Implementations: Quick access to AI Core documentation during client projects
- Training: Support for AI/ML enablement programs
- Solution Design: Research AI Core capabilities and best practices
- Troubleshooting: Find solutions for specific AI Core issues
- Semantic Module: Integrate as a knowledge module in multi-agent orchestration
- Context Provider: Supply AI Core-specific context for solution generation
- Code Assistant: Help generate AI Core-compliant code and configurations
- Model Training: Training ML models using SAP AI Core
- Model Deployment: Deploying and serving models
- AI API: REST API for AI Core services
- Configuration Management: Managing AI Core configurations
- Resource Management: Managing compute resources and artifacts
- Integration: Integrating AI Core with SAP BTP services
- Security: Authentication, authorization, and data protection
- Monitoring: Logging, metrics, and observability
- Initial Index Build: ~5-10 seconds (depending on documentation size)
- Search Queries: <100ms (in-memory search)
- Memory Usage: ~50-100MB (indexed documents)
- Vector embeddings for improved semantic search
- Code sample extraction and indexing
- AI Core API pattern recognition
- Auto-update mechanism for documentation
- Graph database for AI Core service relationships
- Context caching for frequently accessed docs
- Integration with SAP Help Portal
- Multi-language support
This is a delaware Netherlands internal tool. For questions or contributions, contact the Data & AI team.
MIT License - Internal delaware Netherlands use
For issues or questions:
- Internal: delaware Netherlands Data & AI team
- Documentation: SAP AI Core Official Docs
- GitHub: SAP AI Core Documentation Repository
Built with ❤️ by delaware Netherlands Data & AI Team
Part of our "platform-first, cloud-native" AI-empowered operations initiative