Skip to content

niemst/Python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python 0 to AI Agent — Learning Roadmap


🎯 Goal

Build a complete, hands-on learning path from zero programming experience to creating an AI Agent using LangChain or PydanticAI.
This roadmap guides learners through fundamentals, tooling, architecture, backend development, and LLM integration — the way modern Python engineers actually work.


Overview

Phase Focus Outcome
0️⃣ Environment & Tools Set up Python, IDE, Git, uv, Docker
1️⃣ Python Foundations Master syntax, functions, classes
2️⃣ Working with Data APIs, JSON, CSV, error handling
3️⃣ Architecture & Patterns Clean Code, SOLID, design patterns
4️⃣ Modern Backend FastAPI, async, Pydantic, Docker
5️⃣ AI Agents Build LangChain/PydanticAI agents
6️⃣ User Interfaces CLI, GUI, HTML templates, React intro
7️⃣ Growth Path Next steps: async, cloud, open source

⚙️ Tech Stack


🧱 Folder Structure


📁 python-ai-learning/
├── 00_env/              # Environment setup (pyenv, uv, git, docker)
├── 01_basics/           # Python syntax, functions, loops, OOP
├── 02_data_api/         # JSON, CSV, requests, logging, dotenv
├── 03_architecture/     # SOLID, patterns, clean code, tests
├── 04_backend/          # FastAPI, async, Docker
├── 05_ai_agent/         # LangChain, PydanticAI projects
├── 06_ui_interfaces/    # CLI, GUI, HTML templates, React intro
├── 07_next_steps/       # Cloud, CI/CD, Open Source
├── README.md
└── requirements.txt / pyproject.toml


🧠 Learning Phases

🧩 Phase 0 — Environment & Tools

  • Set up IDE (PyCharm or VS Code)
  • Install Python via pyenv
  • Manage dependencies via uv
  • Initialize Git and GitHub repo
  • Learn basic Docker commands

See: 0.md

📘 Real Python – Python Development Environments 📹 Tech With Tim – Python Setup for Beginners (0:00–30:00)


🧩 Phase 1 — Python Foundations

  • Variables, data types, loops, functions
  • Classes, methods, and objects
  • Type hints and dataclass
  • DRY / KISS / Zen of Python

See: 1.md

📘 Official Python Tutorial 📹 freeCodeCamp – Python Full Course (0:00–2:00:00)


🧩 Phase 2 — Working with Data and APIs

  • Files: JSON, CSV
  • requests, API calls, error handling
  • Logging and environment variables
  • Small project: Weather Data Fetcher

📘 requests Library 📹 Corey Schafer – Working with JSON (0:00–10:00)


🧩 Phase 3 — Architecture & Design Patterns

  • SOLID, Clean Code
  • Observer, Factory, Iterator patterns
  • Profiling & optimization (timeit, lru_cache)
  • Unit and integration tests with pytest

📘 Refactoring.Guru – Design Patterns in Python 📹 ArjanCodes – SOLID Principles


🧩 Phase 4 — Backend Development

  • FastAPI + Pydantic
  • Async programming (async/await)
  • Backend design patterns (Repository, Dependency Injection, Factory, Middleware)
  • Dockerfile + docker-compose
  • Simple REST API project

📘 FastAPI Docs 📘 FastAPI Dependency Injection 📹 FastAPI Crash Course (0:00–40:00) 📹 ArjanCodes – FastAPI Best Practices — watch 0:00–15:00


🧩 Phase 5 — Building AI Agents

  • Introduction to LLMs (OpenAI, local models)
  • LangChain basics: Chains, Tools, Memory
  • PydanticAI basics: validation, @ai_function
  • RAG (Retrieval Augmented Generation) with vector databases
  • MCP (Model Context Protocol) for tool integration
  • Agent graphs and workflows (LangGraph)
  • AI Agent Project: Smart Assistant with Memory and RAG

📘 LangChain Quickstart 📘 LangChain RAG Tutorial 📘 Model Context Protocol 📹 Build AI Agents with PydanticAI (0:00–25:00) 📹 LangGraph Tutorial — watch 0:00–20:00


🧩 Phase 6 — User Interfaces

  • CLI tools with argparse, click, typer
  • Python GUI with tkinter (basics)
  • HTML generation with Jinja2 templates
  • FastAPI serving HTML pages
  • Introduction to JavaScript frameworks (React, Vue)
  • Understanding Python backend + JS frontend architecture
  • Deploy to AWS / Azure

📘 Typer Documentation 📘 Jinja2 Templates 📘 React Official Tutorial 📹 Corey Schafer – argparse Tutorial (0:00–12:00) 📹 freeCodeCamp – Tkinter Course (0:00–30:00)


🧩 Phase 7 — Next Steps

  • Async pipelines, Celery, queues
  • Databases: SQL, NoSQL
  • Vector DBs (Chroma, Milvus)
  • CI/CD
  • AI-powered coding tools (GitHub Copilot, Claude Code, Cursor)
  • AI development frameworks (Spec Kit, LangSmith, LangFuse)

📘 Celery Documentation 📘 Claude Code Documentation 📘 LangSmith for AI Development 📹 TechWorld with Nana – CI/CD Explained


🧩 Example Projects

Project Description
Typing Calculator Basic Python with dataclass and tests
Weather Fetcher API + JSON + logging
EventBus Design pattern (Observer)
FastAPI Service Async REST backend
Smart Assistant AI Agent with memory, RAG, and MCP tools

✅ Learning Outcomes

By the end of this roadmap, you will:

  • Write, test, and debug clean Python code
  • Use virtual environments, uv, and Git properly
  • Understand architecture and design principles
  • Build and containerize modern web APIs
  • Create working AI agents that interact with data
  • Know where to grow next (async, cloud, open source)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published