Build a complete, hands-on learning path from zero programming experience to creating an AI Agent using LangChain or PydanticAI.
This roadmap guides learners through fundamentals, tooling, architecture, backend development, and LLM integration — the way modern Python engineers actually work.
| Phase | Focus | Outcome |
|---|---|---|
| 0️⃣ | Environment & Tools | Set up Python, IDE, Git, uv, Docker |
| 1️⃣ | Python Foundations | Master syntax, functions, classes |
| 2️⃣ | Working with Data | APIs, JSON, CSV, error handling |
| 3️⃣ | Architecture & Patterns | Clean Code, SOLID, design patterns |
| 4️⃣ | Modern Backend | FastAPI, async, Pydantic, Docker |
| 5️⃣ | AI Agents | Build LangChain/PydanticAI agents |
| 6️⃣ | User Interfaces | CLI, GUI, HTML templates, React intro |
| 7️⃣ | Growth Path | Next steps: async, cloud, open source |
- Language: Python 3.11+ (via pyenv)
- Environment Manager: uv
- IDE: PyCharm (recommended) or VS Code
- Backend Framework: FastAPI
- Validation: Pydantic
- Containers: Docker
- AI Libraries: LangChain / PydanticAI
- Testing: pytest
- Version Control: Git + GitHub
📁 python-ai-learning/
├── 00_env/ # Environment setup (pyenv, uv, git, docker)
├── 01_basics/ # Python syntax, functions, loops, OOP
├── 02_data_api/ # JSON, CSV, requests, logging, dotenv
├── 03_architecture/ # SOLID, patterns, clean code, tests
├── 04_backend/ # FastAPI, async, Docker
├── 05_ai_agent/ # LangChain, PydanticAI projects
├── 06_ui_interfaces/ # CLI, GUI, HTML templates, React intro
├── 07_next_steps/ # Cloud, CI/CD, Open Source
├── README.md
└── requirements.txt / pyproject.toml
- Set up IDE (PyCharm or VS Code)
- Install Python via pyenv
- Manage dependencies via uv
- Initialize Git and GitHub repo
- Learn basic Docker commands
See: 0.md
📘 Real Python – Python Development Environments 📹 Tech With Tim – Python Setup for Beginners (0:00–30:00)
- Variables, data types, loops, functions
- Classes, methods, and objects
- Type hints and
dataclass - DRY / KISS / Zen of Python
See: 1.md
📘 Official Python Tutorial 📹 freeCodeCamp – Python Full Course (0:00–2:00:00)
- Files: JSON, CSV
requests, API calls, error handling- Logging and environment variables
- Small project: Weather Data Fetcher
📘 requests Library 📹 Corey Schafer – Working with JSON (0:00–10:00)
- SOLID, Clean Code
- Observer, Factory, Iterator patterns
- Profiling & optimization (
timeit,lru_cache) - Unit and integration tests with pytest
📘 Refactoring.Guru – Design Patterns in Python 📹 ArjanCodes – SOLID Principles
- FastAPI + Pydantic
- Async programming (
async/await) - Backend design patterns (Repository, Dependency Injection, Factory, Middleware)
- Dockerfile + docker-compose
- Simple REST API project
📘 FastAPI Docs 📘 FastAPI Dependency Injection 📹 FastAPI Crash Course (0:00–40:00) 📹 ArjanCodes – FastAPI Best Practices — watch 0:00–15:00
- Introduction to LLMs (OpenAI, local models)
- LangChain basics: Chains, Tools, Memory
- PydanticAI basics: validation, @ai_function
- RAG (Retrieval Augmented Generation) with vector databases
- MCP (Model Context Protocol) for tool integration
- Agent graphs and workflows (LangGraph)
- AI Agent Project: Smart Assistant with Memory and RAG
📘 LangChain Quickstart 📘 LangChain RAG Tutorial 📘 Model Context Protocol 📹 Build AI Agents with PydanticAI (0:00–25:00) 📹 LangGraph Tutorial — watch 0:00–20:00
- CLI tools with argparse, click, typer
- Python GUI with tkinter (basics)
- HTML generation with Jinja2 templates
- FastAPI serving HTML pages
- Introduction to JavaScript frameworks (React, Vue)
- Understanding Python backend + JS frontend architecture
- Deploy to AWS / Azure
📘 Typer Documentation 📘 Jinja2 Templates 📘 React Official Tutorial 📹 Corey Schafer – argparse Tutorial (0:00–12:00) 📹 freeCodeCamp – Tkinter Course (0:00–30:00)
- Async pipelines, Celery, queues
- Databases: SQL, NoSQL
- Vector DBs (Chroma, Milvus)
- CI/CD
- AI-powered coding tools (GitHub Copilot, Claude Code, Cursor)
- AI development frameworks (Spec Kit, LangSmith, LangFuse)
📘 Celery Documentation 📘 Claude Code Documentation 📘 LangSmith for AI Development 📹 TechWorld with Nana – CI/CD Explained
| Project | Description |
|---|---|
| Typing Calculator | Basic Python with dataclass and tests |
| Weather Fetcher | API + JSON + logging |
| EventBus | Design pattern (Observer) |
| FastAPI Service | Async REST backend |
| Smart Assistant | AI Agent with memory, RAG, and MCP tools |
By the end of this roadmap, you will:
- Write, test, and debug clean Python code
- Use virtual environments, uv, and Git properly
- Understand architecture and design principles
- Build and containerize modern web APIs
- Create working AI agents that interact with data
- Know where to grow next (async, cloud, open source)