Python 3.5+
Commanline:
pip3 install -r requirements.txt
git clone https://github.com/vanlong96tg/Face_recognize_pytorch
mkdir face_recognize/weights
cd face_recognize/weights
wget https://www.dropbox.com/s/akktsgxp0n8cwn2/model_mobilefacenet.pth?dl=0 -O model_mobilefacenet.pth
wget https://www.dropbox.com/s/kzo52d9neybjxsb/model_ir_se50.pth?dl=0 -O model_ir_se50.pth
wget https://www.dropbox.com/s/rxavczg9dlxy3a8/model_ir50.pth?dl=0 -O model_ir50.pth
Run with default threshold=1.2:
python3 face_verify.py -csv {path_sample submit_csv} -path {path_folder_image} -image {path_image}
Use model ir_se50 (slower but more accurate):
python3 face_verify.py -csv {path_sample submit_csv} -path {path_folder_image} -image {path_image}
Use model MobileNet change config.py:
change args net_size in get_config with net_size='mobi'
Args get_config(mode = 'app', net_size = 'large', net_mode = 'ir_se', use_mtcnn = 1, threshold = 1.25) in config.py:
mode: for demo
net_size: 'large' = model SE_IR50, 'mobi' = model MobileNet
net_mode: for net_size='large' value in ['ir_se', 'ir']
use_mtcnn: 1 using mtcnn default: recommend
threshold: distance > threshold => unknow
Use model mtcnn for face detection:
python3 face_verify.py -csv {path_sample submit_csv} -path {path_folder_image} -image {path_image} -user_mtcnn 1
Run on video:
python3 infer_on_video.py
Video and Face bank.Download video, Face bank and extract in dir.
Install docker
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo groupadd docker
sudo usermod -aG docker $USER
Install docker-compose
pip3 install docker-compose
Run
docker-compose up --build -d
Requirements: url not authenticate
Test with Postman
URL: http://localhost:8084/face_recognition
{
"image_url_origin":"https://www.dropbox.com/s/vm8fvi9xdmjrdmr/PQH_0000.png?dl=0",
"image_url_detection":"https://www.dropbox.com/s/vm8fvi9xdmjrdmr/PQH_0000.png?dl=0"
}
Please zip image to file
URL: http://localhost:8084/face_recognition_two_image
{
"image_url":"https://www.dropbox.com/s/vm8fvi9xdmjrdmr/PQH_0000.png?dl=0",
"file_zip_url":"https://www.dropbox.com/s/bf705wgk2n9vog6/test.zip?dl=0"
}
-
Performance
LFW CFP_FF AgeDB Vggface2_FP 99.73 99.68 97.32 94.88
- This repo is inspired by InsightFace.MXNet, InsightFace.PyTorch, ArcFace.PyTorch, MTCNN.MXNet and PretrainedModels.PyTorch.
- Training Datasets Dataset-Zoo