Deep learning implementation for coastal wave parameter downscaling using multi-scale wind data. Employs 3D U-Net architecture for significant wave height (hs), wave direction (dir), and mean wave period (t02) prediction.
Wendy3d: Multi-encoder 3D U-Net with temporal-spatial processing
- Large-scale wind encoder: 3D U-Net (10-day temporal window)
- Local wind encoder: 3D U-Net (3-day temporal window)
- Fusion decoder: 2D U-Net for final prediction
pip install -r requirements.txtprocessed_data_dir/
├── CFSR/input/wind_input_{au_large,au_local}/
└── WW3/output/{hs,dir,t02}/au/
Training:
python run_all_params.py # All parameters
python train.py # Single modelPrediction:
python predict_metrics.pyConfiguration:
config = Config()
config.y_data_desc = "hs" # Target: hs, dir, t02
config.model_filename = "Wendy3d"- Input: Large wind (3×61×174), Local wind (2×61×121)
- Temporal Windows: 80 steps (large), 24 steps (local)
- Loss: Masked MSE (hs, t02), Masked Angle Cosine (dir)
- Optimizer: Lion with weight decay
- Training: Mixed precision, early stopping (patience=7)