|
61 | 61 | # Save params |
62 | 62 | save_drift = False, |
63 | 63 | save_spectra = False, |
64 | | - save_b_shear = True, |
| 64 | + save_b_shear = False, |
65 | 65 | save_results = save_csvs, |
66 | 66 | # Plot params |
67 | 67 | show_plots = show_plots, |
|
85 | 85 | # --------------------------------------- DRIFT ---------------------------------------- |
86 | 86 | # Compute Drift Results |
87 | 87 | if all(isinstance(value, pd.DataFrame) for value in drifts_df_dict.values()): |
88 | | - sim_type_lst = [key.split('_')[0] for key in drifts_df_dict.keys()] |
89 | | - nsubs_lst = [key.split('_')[1] for key in drifts_df_dict.keys()] |
90 | | - iteration_lst = [key.split('_')[4] for key in drifts_df_dict.keys()] |
91 | | - station_lst = [key.split('_')[5] for key in drifts_df_dict.keys()] |
92 | | - |
93 | | - drift_df = pd.DataFrame({ |
94 | | - 'Sim_Type' : sim_type_lst, |
95 | | - 'Nsubs' : nsubs_lst, |
96 | | - 'Iteration' : iteration_lst, |
97 | | - 'Station' : station_lst}) |
98 | | - |
99 | | - dfx = pd.DataFrame([df['CM x'] for df in drifts_df_dict.values()]) |
100 | | - dfy = pd.DataFrame([df['CM y'] for df in drifts_df_dict.values()]) |
101 | | - dfy = dfy.reset_index() |
102 | | - dfx = dfx.reset_index() |
103 | | - dfy = dfy.iloc[:,1:] |
104 | | - dfx = dfx.iloc[:,1:] |
105 | | - drift_df_x = pd.concat([drift_df, dfx], axis=1) |
106 | | - drift_df_y = pd.concat([drift_df, dfy], axis=1) |
107 | | - rename_dict = { |
108 | | - 1 : 's1', |
109 | | - 2 : 's2', |
110 | | - 3 : 's3', |
111 | | - 4 : 's4', |
112 | | - 5 : 's5', |
113 | | - 6 : 's6', |
114 | | - 7 : 's7', |
115 | | - 8 : 's8', |
116 | | - 9 : 's9', |
117 | | - 10 : 's10', |
118 | | - 11 : 's11', |
119 | | - 12 : 's12', |
120 | | - 13 : 's13', |
121 | | - 14 : 's14', |
122 | | - 15 : 's15', |
123 | | - 16 : 's16', |
124 | | - 17 : 's17', |
125 | | - 18 : 's18', |
126 | | - 19 : 's19', |
127 | | - 20 : 's20', |
128 | | - } |
129 | | - drift_df_x = drift_df_x.rename(columns=rename_dict).copy()[['Sim_Type', 'Nsubs', 'Iteration', 'Station', 's1','s5','s10','s15','s20']] |
130 | | - drift_df_y = drift_df_y.rename(columns=rename_dict).copy()[['Sim_Type', 'Nsubs', 'Iteration', 'Station', 's1','s5','s10','s15','s20']] |
| 88 | + drift_df_x, drift_df_y = getDriftResultsDF(drifts_df_dict) |
131 | 89 | else: |
132 | 90 | drift_df_x = pd.read_csv(project_path / 'drift_per_story_X_df.csv', index_col=0) |
133 | 91 | drift_df_y = pd.read_csv(project_path / 'drift_per_story_Y_df.csv', index_col=0) |
|
136 | 94 | # --------------------------------------- SPECTRUM ---------------------------------------- |
137 | 95 | # We will have the acceleration at the period equal to mode 3 = 0.83s |
138 | 96 | if all(isinstance(value, pd.DataFrame) for value in spectra_df_dict.values()): |
139 | | - sim_type_lst = [key.split('_')[0] for key in spectra_df_dict.keys()] |
140 | | - nsubs_lst = [key.split('_')[1] for key in spectra_df_dict.keys()] |
141 | | - iteration_lst = [key.split('_')[4] for key in spectra_df_dict.keys()] |
142 | | - station_lst = [key.split('_')[5] for key in spectra_df_dict.keys()] |
143 | | - spectra_df = pd.DataFrame({ |
144 | | - 'Sim_Type' : sim_type_lst, |
145 | | - 'Nsubs' : nsubs_lst, |
146 | | - 'Iteration' : iteration_lst, |
147 | | - 'Station' : station_lst,}) |
148 | | - spectra_df['Zone'] = spectra_df['Station'].apply(assignZonesToStationsInDF) |
149 | | - columns_x = ['Story 1 x', 'Story 5 x', 'Story 10 x', 'Story 15 x', 'Story 20 x'] |
150 | | - columns_y = ['Story 1 y', 'Story 5 y', 'Story 10 y', 'Story 15 y', 'Story 20 y'] |
151 | | - |
152 | | - dfx = pd.DataFrame([df[columns_x].iloc[416] for df in spectra_df_dict.values()]) |
153 | | - dfy = pd.DataFrame([df[columns_y].iloc[416] for df in spectra_df_dict.values()]) |
154 | | - dfy = dfy.reset_index() |
155 | | - dfx = dfx.reset_index() |
156 | | - dfy = dfy.iloc[:,1:] |
157 | | - dfx = dfx.iloc[:,1:] |
158 | | - spectra_df_x = pd.concat([spectra_df, dfx], axis=1) |
159 | | - spectra_df_y = pd.concat([spectra_df, dfy], axis=1) |
160 | | - rename_dict = { |
161 | | - 'Story 1 x' : 's1', |
162 | | - 'Story 5 x' : 's5', |
163 | | - 'Story 10 x' : 's10', |
164 | | - 'Story 15 x' : 's15', |
165 | | - 'Story 20 x' : 's20', |
166 | | - } |
167 | | - spectra_df_x = spectra_df_x.rename(columns=rename_dict) |
168 | | - rename_dict = { |
169 | | - 'Story 1 y' : 's1', |
170 | | - 'Story 5 y' : 's5', |
171 | | - 'Story 10 y' : 's10', |
172 | | - 'Story 15 y' : 's15', |
173 | | - 'Story 20 y' : 's20', |
174 | | - } |
175 | | - spectra_df_y = spectra_df_y.rename(columns=rename_dict) |
| 97 | + spectra_df_x, spectra_df_y = getSpectraResultsDF(spectra_df_dict) |
176 | 98 |
|
177 | 99 | else: |
178 | 100 | spectra_df_x = pd.read_csv(project_path / 'spectra_per_story_X_df.csv', index_col=0) |
|
181 | 103 | #%% Compute Base Shear Results |
182 | 104 | # --------------------------------------- BASE SHEAR ---------------------------------------- |
183 | 105 | if all(isinstance(value, pd.DataFrame) for value in base_shear_df_dict.values()): |
184 | | - sim_type_lst = [key.split('_')[0] for key in base_shear_df_dict.keys()] |
185 | | - nsubs_lst = [key.split('_')[1] for key in base_shear_df_dict.keys()] |
186 | | - iteration_lst = [key.split('_')[4] for key in base_shear_df_dict.keys()] |
187 | | - station_lst = [key.split('_')[5] for key in base_shear_df_dict.keys()] |
188 | | - base_shear_df = pd.DataFrame({ |
189 | | - 'Sim_Type' : sim_type_lst, |
190 | | - 'Nsubs' : nsubs_lst, |
191 | | - 'Iteration' : iteration_lst, |
192 | | - 'Station' : station_lst,}) |
193 | | - dfx = pd.DataFrame([df['Shear X'].abs().max() for df in base_shear_df_dict.values()], columns=['MaxShearX']) |
194 | | - dfy = pd.DataFrame([df['Shear Y'].abs().max() for df in base_shear_df_dict.values()], columns=['MaxShearY']) |
195 | | - dfy = dfy.reset_index() |
196 | | - dfx = dfx.reset_index() |
197 | | - dfy = dfy.iloc[:,1:] |
198 | | - dfx = dfx.iloc[:,1:] |
199 | | - base_shear_df_x = pd.concat([base_shear_df, dfx], axis=1) |
200 | | - base_shear_df_y = pd.concat([base_shear_df, dfy], axis=1) |
| 106 | + base_shear_df_x, base_shear_df_y = getSBaseResultsDF(base_shear_df_dict) |
201 | 107 | else: |
202 | 108 | base_shear_df_x = pd.read_csv(project_path / 'max_base_shear_X_df.csv', index_col=0) |
203 | 109 | base_shear_df_y = pd.read_csv(project_path / 'max_base_shear_Y_df.csv', index_col=0) |
204 | 110 |
|
205 | | -# %% |
| 111 | +# %% ========================================== ANOVA ========================================== |
| 112 | + |
0 commit comments