Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
105 changes: 6 additions & 99 deletions Python Scripts/query_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@
# Save params
save_drift = False,
save_spectra = False,
save_b_shear = True,
save_b_shear = False,
save_results = save_csvs,
# Plot params
show_plots = show_plots,
Expand All @@ -85,49 +85,7 @@
# --------------------------------------- DRIFT ----------------------------------------
# Compute Drift Results
if all(isinstance(value, pd.DataFrame) for value in drifts_df_dict.values()):
sim_type_lst = [key.split('_')[0] for key in drifts_df_dict.keys()]
nsubs_lst = [key.split('_')[1] for key in drifts_df_dict.keys()]
iteration_lst = [key.split('_')[4] for key in drifts_df_dict.keys()]
station_lst = [key.split('_')[5] for key in drifts_df_dict.keys()]

drift_df = pd.DataFrame({
'Sim_Type' : sim_type_lst,
'Nsubs' : nsubs_lst,
'Iteration' : iteration_lst,
'Station' : station_lst})

dfx = pd.DataFrame([df['CM x'] for df in drifts_df_dict.values()])
dfy = pd.DataFrame([df['CM y'] for df in drifts_df_dict.values()])
dfy = dfy.reset_index()
dfx = dfx.reset_index()
dfy = dfy.iloc[:,1:]
dfx = dfx.iloc[:,1:]
drift_df_x = pd.concat([drift_df, dfx], axis=1)
drift_df_y = pd.concat([drift_df, dfy], axis=1)
rename_dict = {
1 : 's1',
2 : 's2',
3 : 's3',
4 : 's4',
5 : 's5',
6 : 's6',
7 : 's7',
8 : 's8',
9 : 's9',
10 : 's10',
11 : 's11',
12 : 's12',
13 : 's13',
14 : 's14',
15 : 's15',
16 : 's16',
17 : 's17',
18 : 's18',
19 : 's19',
20 : 's20',
}
drift_df_x = drift_df_x.rename(columns=rename_dict).copy()[['Sim_Type', 'Nsubs', 'Iteration', 'Station', 's1','s5','s10','s15','s20']]
drift_df_y = drift_df_y.rename(columns=rename_dict).copy()[['Sim_Type', 'Nsubs', 'Iteration', 'Station', 's1','s5','s10','s15','s20']]
drift_df_x, drift_df_y = getDriftResultsDF(drifts_df_dict)
else:
drift_df_x = pd.read_csv(project_path / 'drift_per_story_X_df.csv', index_col=0)
drift_df_y = pd.read_csv(project_path / 'drift_per_story_Y_df.csv', index_col=0)
Expand All @@ -136,43 +94,7 @@
# --------------------------------------- SPECTRUM ----------------------------------------
# We will have the acceleration at the period equal to mode 3 = 0.83s
if all(isinstance(value, pd.DataFrame) for value in spectra_df_dict.values()):
sim_type_lst = [key.split('_')[0] for key in spectra_df_dict.keys()]
nsubs_lst = [key.split('_')[1] for key in spectra_df_dict.keys()]
iteration_lst = [key.split('_')[4] for key in spectra_df_dict.keys()]
station_lst = [key.split('_')[5] for key in spectra_df_dict.keys()]
spectra_df = pd.DataFrame({
'Sim_Type' : sim_type_lst,
'Nsubs' : nsubs_lst,
'Iteration' : iteration_lst,
'Station' : station_lst,})
spectra_df['Zone'] = spectra_df['Station'].apply(assignZonesToStationsInDF)
columns_x = ['Story 1 x', 'Story 5 x', 'Story 10 x', 'Story 15 x', 'Story 20 x']
columns_y = ['Story 1 y', 'Story 5 y', 'Story 10 y', 'Story 15 y', 'Story 20 y']

dfx = pd.DataFrame([df[columns_x].iloc[416] for df in spectra_df_dict.values()])
dfy = pd.DataFrame([df[columns_y].iloc[416] for df in spectra_df_dict.values()])
dfy = dfy.reset_index()
dfx = dfx.reset_index()
dfy = dfy.iloc[:,1:]
dfx = dfx.iloc[:,1:]
spectra_df_x = pd.concat([spectra_df, dfx], axis=1)
spectra_df_y = pd.concat([spectra_df, dfy], axis=1)
rename_dict = {
'Story 1 x' : 's1',
'Story 5 x' : 's5',
'Story 10 x' : 's10',
'Story 15 x' : 's15',
'Story 20 x' : 's20',
}
spectra_df_x = spectra_df_x.rename(columns=rename_dict)
rename_dict = {
'Story 1 y' : 's1',
'Story 5 y' : 's5',
'Story 10 y' : 's10',
'Story 15 y' : 's15',
'Story 20 y' : 's20',
}
spectra_df_y = spectra_df_y.rename(columns=rename_dict)
spectra_df_x, spectra_df_y = getSpectraResultsDF(spectra_df_dict)

else:
spectra_df_x = pd.read_csv(project_path / 'spectra_per_story_X_df.csv', index_col=0)
Expand All @@ -181,25 +103,10 @@
#%% Compute Base Shear Results
# --------------------------------------- BASE SHEAR ----------------------------------------
if all(isinstance(value, pd.DataFrame) for value in base_shear_df_dict.values()):
sim_type_lst = [key.split('_')[0] for key in base_shear_df_dict.keys()]
nsubs_lst = [key.split('_')[1] for key in base_shear_df_dict.keys()]
iteration_lst = [key.split('_')[4] for key in base_shear_df_dict.keys()]
station_lst = [key.split('_')[5] for key in base_shear_df_dict.keys()]
base_shear_df = pd.DataFrame({
'Sim_Type' : sim_type_lst,
'Nsubs' : nsubs_lst,
'Iteration' : iteration_lst,
'Station' : station_lst,})
dfx = pd.DataFrame([df['Shear X'].abs().max() for df in base_shear_df_dict.values()], columns=['MaxShearX'])
dfy = pd.DataFrame([df['Shear Y'].abs().max() for df in base_shear_df_dict.values()], columns=['MaxShearY'])
dfy = dfy.reset_index()
dfx = dfx.reset_index()
dfy = dfy.iloc[:,1:]
dfx = dfx.iloc[:,1:]
base_shear_df_x = pd.concat([base_shear_df, dfx], axis=1)
base_shear_df_y = pd.concat([base_shear_df, dfy], axis=1)
base_shear_df_x, base_shear_df_y = getSBaseResultsDF(base_shear_df_dict)
else:
base_shear_df_x = pd.read_csv(project_path / 'max_base_shear_X_df.csv', index_col=0)
base_shear_df_y = pd.read_csv(project_path / 'max_base_shear_Y_df.csv', index_col=0)

# %%
# %% ========================================== ANOVA ==========================================