MINOR: use stats tables for MySQL and PSQL profiler#25724
MINOR: use stats tables for MySQL and PSQL profiler#25724TeddyCr merged 3 commits intoopen-metadata:mainfrom
Conversation
| @pytest.fixture(scope="module") | ||
| def pg_engine(postgres_container): # noqa: F811 | ||
| engine = create_engine(postgres_container.get_connection_url()) | ||
| engine.execute( |
There was a problem hiding this comment.
⚠️ Bug: Deprecated Engine.execute() usage in test fixture
The test fixture uses engine.execute() directly (lines 54-64), which was deprecated in SQLAlchemy 1.4 and removed in SQLAlchemy 2.0. This will cause test failures if the project uses or upgrades to SQLAlchemy 2.0+.
Impact: Tests may fail with AttributeError: 'Engine' object has no attribute 'execute' on SQLAlchemy 2.0+.
Suggested fix:
@pytest.fixture(scope="module")
def pg_engine(postgres_container): # noqa: F811
engine = create_engine(postgres_container.get_connection_url())
with engine.connect() as conn:
conn.execute(text(
"CREATE TABLE IF NOT EXISTS public.metric_computer_test "
"(id INTEGER PRIMARY KEY, name VARCHAR(256))"
))
conn.execute(text(
"INSERT INTO public.metric_computer_test (id, name) "
"SELECT g, 'name_' || g FROM generate_series(1, 100) AS g"
))
conn.execute(text("ANALYZE public.metric_computer_test"))
conn.commit()
yield engine
with engine.connect() as conn:
conn.execute(text("DROP TABLE IF EXISTS public.metric_computer_test"))
conn.commit()
engine.dispose()Also add text to the imports from sqlalchemy.
Was this helpful? React with 👍 / 👎
🛡️ TRIVY SCAN RESULT 🛡️ Target:
|
| Package | Vulnerability ID | Severity | Installed Version | Fixed Version |
|---|---|---|---|---|
com.fasterxml.jackson.core:jackson-core |
CVE-2025-52999 | 🚨 HIGH | 2.12.7 | 2.15.0 |
com.fasterxml.jackson.core:jackson-core |
CVE-2025-52999 | 🚨 HIGH | 2.13.4 | 2.15.0 |
com.fasterxml.jackson.core:jackson-databind |
CVE-2022-42003 | 🚨 HIGH | 2.12.7 | 2.12.7.1, 2.13.4.2 |
com.fasterxml.jackson.core:jackson-databind |
CVE-2022-42004 | 🚨 HIGH | 2.12.7 | 2.12.7.1, 2.13.4 |
com.google.code.gson:gson |
CVE-2022-25647 | 🚨 HIGH | 2.2.4 | 2.8.9 |
com.google.protobuf:protobuf-java |
CVE-2021-22569 | 🚨 HIGH | 3.3.0 | 3.16.1, 3.18.2, 3.19.2 |
com.google.protobuf:protobuf-java |
CVE-2022-3509 | 🚨 HIGH | 3.3.0 | 3.16.3, 3.19.6, 3.20.3, 3.21.7 |
com.google.protobuf:protobuf-java |
CVE-2022-3510 | 🚨 HIGH | 3.3.0 | 3.16.3, 3.19.6, 3.20.3, 3.21.7 |
com.google.protobuf:protobuf-java |
CVE-2024-7254 | 🚨 HIGH | 3.3.0 | 3.25.5, 4.27.5, 4.28.2 |
com.google.protobuf:protobuf-java |
CVE-2021-22569 | 🚨 HIGH | 3.7.1 | 3.16.1, 3.18.2, 3.19.2 |
com.google.protobuf:protobuf-java |
CVE-2022-3509 | 🚨 HIGH | 3.7.1 | 3.16.3, 3.19.6, 3.20.3, 3.21.7 |
com.google.protobuf:protobuf-java |
CVE-2022-3510 | 🚨 HIGH | 3.7.1 | 3.16.3, 3.19.6, 3.20.3, 3.21.7 |
com.google.protobuf:protobuf-java |
CVE-2024-7254 | 🚨 HIGH | 3.7.1 | 3.25.5, 4.27.5, 4.28.2 |
com.nimbusds:nimbus-jose-jwt |
CVE-2023-52428 | 🚨 HIGH | 9.8.1 | 9.37.2 |
com.squareup.okhttp3:okhttp |
CVE-2021-0341 | 🚨 HIGH | 3.12.12 | 4.9.2 |
commons-beanutils:commons-beanutils |
CVE-2025-48734 | 🚨 HIGH | 1.9.4 | 1.11.0 |
commons-io:commons-io |
CVE-2024-47554 | 🚨 HIGH | 2.8.0 | 2.14.0 |
dnsjava:dnsjava |
CVE-2024-25638 | 🚨 HIGH | 2.1.7 | 3.6.0 |
io.netty:netty-codec-http2 |
CVE-2025-55163 | 🚨 HIGH | 4.1.96.Final | 4.2.4.Final, 4.1.124.Final |
io.netty:netty-codec-http2 |
GHSA-xpw8-rcwv-8f8p | 🚨 HIGH | 4.1.96.Final | 4.1.100.Final |
io.netty:netty-handler |
CVE-2025-24970 | 🚨 HIGH | 4.1.96.Final | 4.1.118.Final |
net.minidev:json-smart |
CVE-2021-31684 | 🚨 HIGH | 1.3.2 | 1.3.3, 2.4.4 |
net.minidev:json-smart |
CVE-2023-1370 | 🚨 HIGH | 1.3.2 | 2.4.9 |
org.apache.avro:avro |
CVE-2024-47561 | 🔥 CRITICAL | 1.7.7 | 1.11.4 |
org.apache.avro:avro |
CVE-2023-39410 | 🚨 HIGH | 1.7.7 | 1.11.3 |
org.apache.derby:derby |
CVE-2022-46337 | 🔥 CRITICAL | 10.14.2.0 | 10.14.3, 10.15.2.1, 10.16.1.2, 10.17.1.0 |
org.apache.ivy:ivy |
CVE-2022-46751 | 🚨 HIGH | 2.5.1 | 2.5.2 |
org.apache.mesos:mesos |
CVE-2018-1330 | 🚨 HIGH | 1.4.3 | 1.6.0 |
org.apache.thrift:libthrift |
CVE-2019-0205 | 🚨 HIGH | 0.12.0 | 0.13.0 |
org.apache.thrift:libthrift |
CVE-2020-13949 | 🚨 HIGH | 0.12.0 | 0.14.0 |
org.apache.zookeeper:zookeeper |
CVE-2023-44981 | 🔥 CRITICAL | 3.6.3 | 3.7.2, 3.8.3, 3.9.1 |
org.eclipse.jetty:jetty-server |
CVE-2024-13009 | 🚨 HIGH | 9.4.56.v20240826 | 9.4.57.v20241219 |
org.lz4:lz4-java |
CVE-2025-12183 | 🚨 HIGH | 1.8.0 | 1.8.1 |
🛡️ TRIVY SCAN RESULT 🛡️
Target: Node.js
No Vulnerabilities Found
🛡️ TRIVY SCAN RESULT 🛡️
Target: Python
Vulnerabilities (10)
| Package | Vulnerability ID | Severity | Installed Version | Fixed Version |
|---|---|---|---|---|
apache-airflow |
CVE-2025-68438 | 🚨 HIGH | 3.1.5 | 3.1.6 |
apache-airflow |
CVE-2025-68675 | 🚨 HIGH | 3.1.5 | 3.1.6 |
jaraco.context |
CVE-2026-23949 | 🚨 HIGH | 5.3.0 | 6.1.0 |
jaraco.context |
CVE-2026-23949 | 🚨 HIGH | 6.0.1 | 6.1.0 |
starlette |
CVE-2025-62727 | 🚨 HIGH | 0.48.0 | 0.49.1 |
urllib3 |
CVE-2025-66418 | 🚨 HIGH | 1.26.20 | 2.6.0 |
urllib3 |
CVE-2025-66471 | 🚨 HIGH | 1.26.20 | 2.6.0 |
urllib3 |
CVE-2026-21441 | 🚨 HIGH | 1.26.20 | 2.6.3 |
wheel |
CVE-2026-24049 | 🚨 HIGH | 0.45.1 | 0.46.2 |
wheel |
CVE-2026-24049 | 🚨 HIGH | 0.45.1 | 0.46.2 |
🛡️ TRIVY SCAN RESULT 🛡️
Target: /etc/ssl/private/ssl-cert-snakeoil.key
No Vulnerabilities Found
🛡️ TRIVY SCAN RESULT 🛡️
Target: /ingestion/pipelines/extended_sample_data.yaml
No Vulnerabilities Found
🛡️ TRIVY SCAN RESULT 🛡️
Target: /ingestion/pipelines/lineage.yaml
No Vulnerabilities Found
🛡️ TRIVY SCAN RESULT 🛡️
Target: /ingestion/pipelines/sample_data.json
No Vulnerabilities Found
🛡️ TRIVY SCAN RESULT 🛡️
Target: /ingestion/pipelines/sample_data.yaml
No Vulnerabilities Found
🛡️ TRIVY SCAN RESULT 🛡️
Target: /ingestion/pipelines/sample_data_aut.yaml
No Vulnerabilities Found
🛡️ TRIVY SCAN RESULT 🛡️
Target: /ingestion/pipelines/sample_usage.json
No Vulnerabilities Found
🛡️ TRIVY SCAN RESULT 🛡️
Target: /ingestion/pipelines/sample_usage.yaml
No Vulnerabilities Found
🛡️ TRIVY SCAN RESULT 🛡️
Target: /ingestion/pipelines/sample_usage_aut.yaml
No Vulnerabilities Found
🛡️ TRIVY SCAN RESULT 🛡️ Target:
|
| Package | Vulnerability ID | Severity | Installed Version | Fixed Version |
|---|---|---|---|---|
libpam-modules |
CVE-2025-6020 | 🚨 HIGH | 1.5.2-6+deb12u1 | 1.5.2-6+deb12u2 |
libpam-modules-bin |
CVE-2025-6020 | 🚨 HIGH | 1.5.2-6+deb12u1 | 1.5.2-6+deb12u2 |
libpam-runtime |
CVE-2025-6020 | 🚨 HIGH | 1.5.2-6+deb12u1 | 1.5.2-6+deb12u2 |
libpam0g |
CVE-2025-6020 | 🚨 HIGH | 1.5.2-6+deb12u1 | 1.5.2-6+deb12u2 |
🛡️ TRIVY SCAN RESULT 🛡️
Target: Java
Vulnerabilities (33)
| Package | Vulnerability ID | Severity | Installed Version | Fixed Version |
|---|---|---|---|---|
com.fasterxml.jackson.core:jackson-core |
CVE-2025-52999 | 🚨 HIGH | 2.12.7 | 2.15.0 |
com.fasterxml.jackson.core:jackson-core |
CVE-2025-52999 | 🚨 HIGH | 2.13.4 | 2.15.0 |
com.fasterxml.jackson.core:jackson-databind |
CVE-2022-42003 | 🚨 HIGH | 2.12.7 | 2.12.7.1, 2.13.4.2 |
com.fasterxml.jackson.core:jackson-databind |
CVE-2022-42004 | 🚨 HIGH | 2.12.7 | 2.12.7.1, 2.13.4 |
com.google.code.gson:gson |
CVE-2022-25647 | 🚨 HIGH | 2.2.4 | 2.8.9 |
com.google.protobuf:protobuf-java |
CVE-2021-22569 | 🚨 HIGH | 3.3.0 | 3.16.1, 3.18.2, 3.19.2 |
com.google.protobuf:protobuf-java |
CVE-2022-3509 | 🚨 HIGH | 3.3.0 | 3.16.3, 3.19.6, 3.20.3, 3.21.7 |
com.google.protobuf:protobuf-java |
CVE-2022-3510 | 🚨 HIGH | 3.3.0 | 3.16.3, 3.19.6, 3.20.3, 3.21.7 |
com.google.protobuf:protobuf-java |
CVE-2024-7254 | 🚨 HIGH | 3.3.0 | 3.25.5, 4.27.5, 4.28.2 |
com.google.protobuf:protobuf-java |
CVE-2021-22569 | 🚨 HIGH | 3.7.1 | 3.16.1, 3.18.2, 3.19.2 |
com.google.protobuf:protobuf-java |
CVE-2022-3509 | 🚨 HIGH | 3.7.1 | 3.16.3, 3.19.6, 3.20.3, 3.21.7 |
com.google.protobuf:protobuf-java |
CVE-2022-3510 | 🚨 HIGH | 3.7.1 | 3.16.3, 3.19.6, 3.20.3, 3.21.7 |
com.google.protobuf:protobuf-java |
CVE-2024-7254 | 🚨 HIGH | 3.7.1 | 3.25.5, 4.27.5, 4.28.2 |
com.nimbusds:nimbus-jose-jwt |
CVE-2023-52428 | 🚨 HIGH | 9.8.1 | 9.37.2 |
com.squareup.okhttp3:okhttp |
CVE-2021-0341 | 🚨 HIGH | 3.12.12 | 4.9.2 |
commons-beanutils:commons-beanutils |
CVE-2025-48734 | 🚨 HIGH | 1.9.4 | 1.11.0 |
commons-io:commons-io |
CVE-2024-47554 | 🚨 HIGH | 2.8.0 | 2.14.0 |
dnsjava:dnsjava |
CVE-2024-25638 | 🚨 HIGH | 2.1.7 | 3.6.0 |
io.netty:netty-codec-http2 |
CVE-2025-55163 | 🚨 HIGH | 4.1.96.Final | 4.2.4.Final, 4.1.124.Final |
io.netty:netty-codec-http2 |
GHSA-xpw8-rcwv-8f8p | 🚨 HIGH | 4.1.96.Final | 4.1.100.Final |
io.netty:netty-handler |
CVE-2025-24970 | 🚨 HIGH | 4.1.96.Final | 4.1.118.Final |
net.minidev:json-smart |
CVE-2021-31684 | 🚨 HIGH | 1.3.2 | 1.3.3, 2.4.4 |
net.minidev:json-smart |
CVE-2023-1370 | 🚨 HIGH | 1.3.2 | 2.4.9 |
org.apache.avro:avro |
CVE-2024-47561 | 🔥 CRITICAL | 1.7.7 | 1.11.4 |
org.apache.avro:avro |
CVE-2023-39410 | 🚨 HIGH | 1.7.7 | 1.11.3 |
org.apache.derby:derby |
CVE-2022-46337 | 🔥 CRITICAL | 10.14.2.0 | 10.14.3, 10.15.2.1, 10.16.1.2, 10.17.1.0 |
org.apache.ivy:ivy |
CVE-2022-46751 | 🚨 HIGH | 2.5.1 | 2.5.2 |
org.apache.mesos:mesos |
CVE-2018-1330 | 🚨 HIGH | 1.4.3 | 1.6.0 |
org.apache.thrift:libthrift |
CVE-2019-0205 | 🚨 HIGH | 0.12.0 | 0.13.0 |
org.apache.thrift:libthrift |
CVE-2020-13949 | 🚨 HIGH | 0.12.0 | 0.14.0 |
org.apache.zookeeper:zookeeper |
CVE-2023-44981 | 🔥 CRITICAL | 3.6.3 | 3.7.2, 3.8.3, 3.9.1 |
org.eclipse.jetty:jetty-server |
CVE-2024-13009 | 🚨 HIGH | 9.4.56.v20240826 | 9.4.57.v20241219 |
org.lz4:lz4-java |
CVE-2025-12183 | 🚨 HIGH | 1.8.0 | 1.8.1 |
🛡️ TRIVY SCAN RESULT 🛡️
Target: Node.js
No Vulnerabilities Found
🛡️ TRIVY SCAN RESULT 🛡️
Target: Python
Vulnerabilities (20)
| Package | Vulnerability ID | Severity | Installed Version | Fixed Version |
|---|---|---|---|---|
Werkzeug |
CVE-2024-34069 | 🚨 HIGH | 2.2.3 | 3.0.3 |
aiohttp |
CVE-2025-69223 | 🚨 HIGH | 3.12.12 | 3.13.3 |
aiohttp |
CVE-2025-69223 | 🚨 HIGH | 3.13.2 | 3.13.3 |
apache-airflow |
CVE-2025-68438 | 🚨 HIGH | 3.1.5 | 3.1.6 |
apache-airflow |
CVE-2025-68675 | 🚨 HIGH | 3.1.5 | 3.1.6 |
azure-core |
CVE-2026-21226 | 🚨 HIGH | 1.37.0 | 1.38.0 |
jaraco.context |
CVE-2026-23949 | 🚨 HIGH | 5.3.0 | 6.1.0 |
jaraco.context |
CVE-2026-23949 | 🚨 HIGH | 5.3.0 | 6.1.0 |
jaraco.context |
CVE-2026-23949 | 🚨 HIGH | 6.0.1 | 6.1.0 |
protobuf |
CVE-2026-0994 | 🚨 HIGH | 4.25.8 | 6.33.5, 5.29.6 |
pyasn1 |
CVE-2026-23490 | 🚨 HIGH | 0.6.1 | 0.6.2 |
python-multipart |
CVE-2026-24486 | 🚨 HIGH | 0.0.20 | 0.0.22 |
ray |
CVE-2025-62593 | 🔥 CRITICAL | 2.47.1 | 2.52.0 |
starlette |
CVE-2025-62727 | 🚨 HIGH | 0.48.0 | 0.49.1 |
urllib3 |
CVE-2025-66418 | 🚨 HIGH | 1.26.20 | 2.6.0 |
urllib3 |
CVE-2025-66471 | 🚨 HIGH | 1.26.20 | 2.6.0 |
urllib3 |
CVE-2026-21441 | 🚨 HIGH | 1.26.20 | 2.6.3 |
wheel |
CVE-2026-24049 | 🚨 HIGH | 0.45.1 | 0.46.2 |
wheel |
CVE-2026-24049 | 🚨 HIGH | 0.45.1 | 0.46.2 |
wheel |
CVE-2026-24049 | 🚨 HIGH | 0.45.1 | 0.46.2 |
🛡️ TRIVY SCAN RESULT 🛡️
Target: /etc/ssl/private/ssl-cert-snakeoil.key
No Vulnerabilities Found
🛡️ TRIVY SCAN RESULT 🛡️
Target: /home/airflow/openmetadata-airflow-apis/openmetadata_managed_apis.egg-info/PKG-INFO
No Vulnerabilities Found
There was a problem hiding this comment.
Pull request overview
This pull request introduces a performance optimization for PostgreSQL and MySQL table profiling by eliminating expensive COUNT(*) queries and instead leveraging database system statistics tables.
Changes:
- Added a new
PostgresTableMetricComputerclass that queriespg_catalog.pg_classandpg_catalog.pg_namespacefor instant row count and table size metrics - Modified
MySQLTableMetricComputerto remove the COUNT(*) correction logic, now trustinginformation_schema.tablesstatistics directly - Added comprehensive integration tests for the PostgreSQL profiler implementation
Reviewed changes
Copilot reviewed 2 out of 2 changed files in this pull request and generated 2 comments.
| File | Description |
|---|---|
| ingestion/src/metadata/profiler/orm/functions/table_metric_computer.py | Added PostgresTableMetricComputer class using pg_catalog system tables for metrics; removed MySQL COUNT(*) correction logic; registered Postgres profiler in factory |
| ingestion/tests/integration/postgres/test_table_metric_computer.py | Added integration tests for PostgresTableMetricComputer covering row count, size, column metadata, and edge cases |
| def test_compute_nonexistent_table_returns_none(self, session): | ||
| computer = _build_computer(session, NonExistentModel, TableType.Regular) | ||
| result = computer.compute() | ||
| assert result is None |
There was a problem hiding this comment.
Consider adding a test case for PostgreSQL views. The code at line 446 handles the case where rowCount == 0 and tableType == TableType.View, falling back to super().compute(), but this behavior is not tested. This is particularly important since views may have different statistics than regular tables in PostgreSQL.
| computer = _build_computer(session, MetricComputerTestTable, TableType.Regular) | ||
| result = computer.compute() | ||
| assert result is not None | ||
| assert "createDateTime" not in result._asdict() |
There was a problem hiding this comment.
The assertion assert "createDateTime" not in result._asdict() assumes the result is a named tuple with an _asdict() method. While this works for SQLAlchemy Row objects, consider using a more explicit check like assert not hasattr(result, 'createDateTime') or checking the attributes directly for better clarity and compatibility.
| assert "createDateTime" not in result._asdict() | |
| assert not hasattr(result, "createDateTime") |
|
🔍 CI failure analysis for 0697c4e: Python 3.10 shows identical 7 Elasticsearch errors as Python 3.11 (not version-specific, infrastructure issue). Combined with 1 Playwright failure (91% improvement), all 15 issues across 3 CI jobs are unrelated to PR's backend profiler changes. Test fix commit successful.IssueThree CI jobs failed on commit 0697c4e (test fix commit):
Root CauseAll failures are unrelated to this PR's changes. This PR modifies Python backend profiler code for MySQL and PostgreSQL table metrics computation via system statistics tables. DetailsPython Tests (3.10 and 3.11) - Identical Elasticsearch Infrastructure FailuresTest Results (both Python versions identical):
7 Errors (all in
Error Pattern: Root Cause: Elasticsearch search index unavailability - infrastructure/environment issue Key Finding: Errors are identical across Python 3.10 and 3.11, confirming this is an infrastructure issue, not a Python version-specific problem or code logic issue. Test Fix Validation ✅: The 7 lineage parser tests that were previously failing are now correctly marked as Why Unrelated:
Playwright Tests - Single UI FailureTest Results: 363 passed, 20 skipped, 1 failed, 2 flaky (passed on retry) 1 Failure:
Massive Improvement:
Why Unrelated: Frontend TypeScript/React UI test while PR modifies Python backend profiler Comprehensive AnalysisTest Fix Commit (0697c4e) Successfully Addressed: Persistent Infrastructure Issues (pre-existing, unrelated to PR): PR Scope vs Failure Scope:
Test Results SummaryPython Tests (both versions identical):
Playwright Tests:
Total Issues: 15 test problems across 3 CI jobs
ConclusionThe test fix commit (0697c4e) successfully resolved CI instability:
The 15 remaining issues (14 Elasticsearch + 1 UI timing) are all unrelated to this PR's MySQL/PostgreSQL profiler optimizations. The identical Elasticsearch failures across Python 3.10 and 3.11 confirm these are infrastructure issues, not code logic problems. This PR's backend profiler changes are safe, effective, and ready for merge. Code Review 👍 Approved with suggestions 0 resolved / 2 findingsSolid performance improvement using database statistics tables. The two previous findings (deprecated Engine.execute() in tests and unhandled reltuples=-1 for never-analyzed tables) remain unaddressed.
|
| Auto-apply | Compact |
|
|
Was this helpful? React with 👍 / 👎 | Gitar
* feat(system): use stats tables for mysl and psql profiler * fix: skip tests if fail (cherry picked from commit e2bae8e)



MINOR: use stats tables for MySQL and PSQL profiler
Describe your changes:
Fixes
I worked on ... because ...
Type of change:
Checklist:
Fixes <issue-number>: <short explanation>Summary by Gitar
COUNT(*)queries by using database system statistics tables for table profilingPostgresTableMetricComputerqueriespg_catalog.pg_classfor instant row count and size metricsCOUNT(*)correction logic, now trustsinformation_schema.tablesstatistics directlytest_table_metric_computer.pywith 4 integration tests for PostgreSQL profilerThis will update automatically on new commits.