Skip to content

ValueError: size shape must match input shape. Input is 2D, size is 3 #672

@kingbackyang

Description

@kingbackyang

Here is my self-defined dataset class:
import os
import os.path as osp
from collections import OrderedDict
from functools import reduce

import mmcv
import numpy as np
from mmcv.utils import print_log
from prettytable import PrettyTable
from torch.utils.data import Dataset

from mmseg.core import eval_metrics
from mmseg.utils import get_root_logger
from .builder import DATASETS
from .pipelines import Compose

@DATASETS.register_module()
class CellDataset(Dataset):
"""Custom dataset for semantic segmentation. An example of file structure
is as followed.

.. code-block:: none

    ├── data
    │   ├── my_dataset
    │   │   ├── img_dir
    │   │   │   ├── train
    │   │   │   │   ├── xxx{img_suffix}
    │   │   │   │   ├── yyy{img_suffix}
    │   │   │   │   ├── zzz{img_suffix}
    │   │   │   ├── val
    │   │   ├── ann_dir
    │   │   │   ├── train
    │   │   │   │   ├── xxx{seg_map_suffix}
    │   │   │   │   ├── yyy{seg_map_suffix}
    │   │   │   │   ├── zzz{seg_map_suffix}
    │   │   │   ├── val

The img/gt_semantic_seg pair of CustomDataset should be of the same
except suffix. A valid img/gt_semantic_seg filename pair should be like
``xxx{img_suffix}`` and ``xxx{seg_map_suffix}`` (extension is also included
in the suffix). If split is given, then ``xxx`` is specified in txt file.
Otherwise, all files in ``img_dir/``and ``ann_dir`` will be loaded.
Please refer to ``docs/tutorials/new_dataset.md`` for more details.


Args:
    pipeline (list[dict]): Processing pipeline
    img_dir (str): Path to image directory
    img_suffix (str): Suffix of images. Default: '.jpg'
    ann_dir (str, optional): Path to annotation directory. Default: None
    seg_map_suffix (str): Suffix of segmentation maps. Default: '.png'
    split (str, optional): Split txt file. If split is specified, only
        file with suffix in the splits will be loaded. Otherwise, all
        images in img_dir/ann_dir will be loaded. Default: None
    data_root (str, optional): Data root for img_dir/ann_dir. Default:
        None.
    test_mode (bool): If test_mode=True, gt wouldn't be loaded.
    ignore_index (int): The label index to be ignored. Default: 255
    reduce_zero_label (bool): Whether to mark label zero as ignored.
        Default: False
    classes (str | Sequence[str], optional): Specify classes to load.
        If is None, ``cls.CLASSES`` will be used. Default: None.
    palette (Sequence[Sequence[int]]] | np.ndarray | None):
        The palette of segmentation map. If None is given, and
        self.PALETTE is None, random palette will be generated.
        Default: None
"""

CLASSES = ('cell')

PALETTE = [[255, 255, 255]]

def __init__(self,
             pipeline,
             img_dir,
             img_suffix='.jpg',
             ann_dir=None,
             seg_map_suffix='_mask.png',
             split=None,
             data_root=None,
             test_mode=False,
             ignore_index=255,
             reduce_zero_label=False,
             classes=None,
             palette=None):
    self.pipeline = Compose(pipeline)
    self.img_dir = img_dir
    self.img_suffix = img_suffix
    self.ann_dir = ann_dir
    self.seg_map_suffix = seg_map_suffix
    self.split = split
    self.data_root = data_root
    self.test_mode = test_mode
    self.ignore_index = ignore_index
    self.reduce_zero_label = reduce_zero_label
    self.label_map = None
    self.CLASSES, self.PALETTE = self.get_classes_and_palette(
        classes, palette)

    # join paths if data_root is specified
    if self.data_root is not None:
        if not osp.isabs(self.img_dir):
            self.img_dir = osp.join(self.data_root, self.img_dir)
        if not (self.ann_dir is None or osp.isabs(self.ann_dir)):
            self.ann_dir = osp.join(self.data_root, self.ann_dir)
        if not (self.split is None or osp.isabs(self.split)):
            self.split = osp.join(self.data_root, self.split)

    # load annotations
    self.img_infos = self.load_annotations(self.img_dir, self.img_suffix,
                                           self.ann_dir,
                                           self.seg_map_suffix, self.split)

def __len__(self):
    """Total number of samples of data."""
    return len(self.img_infos)

def load_annotations(self, img_dir, img_suffix, ann_dir, seg_map_suffix,
                     split):
    """Load annotation from directory.

    Args:
        img_dir (str): Path to image directory
        img_suffix (str): Suffix of images.
        ann_dir (str|None): Path to annotation directory.
        seg_map_suffix (str|None): Suffix of segmentation maps.
        split (str|None): Split txt file. If split is specified, only file
            with suffix in the splits will be loaded. Otherwise, all images
            in img_dir/ann_dir will be loaded. Default: None

    Returns:
        list[dict]: All image info of dataset.
    """

    img_infos = []
    if split is not None:
        with open(split) as f:
            for line in f:
                img_name = line.strip()
                img_info = dict(filename=img_name + img_suffix)
                if ann_dir is not None:
                    seg_map = img_name + seg_map_suffix
                    img_info['ann'] = dict(seg_map=seg_map)
                img_infos.append(img_info)
    else:
        for img in mmcv.scandir(img_dir, img_suffix, recursive=True):
            img_info = dict(filename=img)
            if ann_dir is not None:
                seg_map = img.replace(img_suffix, seg_map_suffix)
                img_info['ann'] = dict(seg_map=seg_map)
            img_infos.append(img_info)

    print_log(f'Loaded {len(img_infos)} images', logger=get_root_logger())
    return img_infos

def get_ann_info(self, idx):
    """Get annotation by index.

    Args:
        idx (int): Index of data.

    Returns:
        dict: Annotation info of specified index.
    """

    return self.img_infos[idx]['ann']

def pre_pipeline(self, results):
    """Prepare results dict for pipeline."""
    results['seg_fields'] = []
    results['img_prefix'] = self.img_dir
    results['seg_prefix'] = self.ann_dir
    if self.custom_classes:
        results['label_map'] = self.label_map

def __getitem__(self, idx):
    """Get training/test data after pipeline.

    Args:
        idx (int): Index of data.

    Returns:
        dict: Training/test data (with annotation if `test_mode` is set
            False).
    """

    if self.test_mode:
        return self.prepare_test_img(idx)
    else:
        return self.prepare_train_img(idx)

def prepare_train_img(self, idx):
    """Get training data and annotations after pipeline.

    Args:
        idx (int): Index of data.

    Returns:
        dict: Training data and annotation after pipeline with new keys
            introduced by pipeline.
    """

    img_info = self.img_infos[idx]
    ann_info = self.get_ann_info(idx)
    results = dict(img_info=img_info, ann_info=ann_info)
    self.pre_pipeline(results)
    return self.pipeline(results)

def prepare_test_img(self, idx):
    """Get testing data after pipeline.

    Args:
        idx (int): Index of data.

    Returns:
        dict: Testing data after pipeline with new keys introduced by
            pipeline.
    """

    img_info = self.img_infos[idx]
    results = dict(img_info=img_info)
    self.pre_pipeline(results)
    return self.pipeline(results)

def format_results(self, results, **kwargs):
    """Place holder to format result to dataset specific output."""

def get_gt_seg_maps(self, efficient_test=False):
    """Get ground truth segmentation maps for evaluation."""
    gt_seg_maps = []
    for img_info in self.img_infos:
        seg_map = osp.join(self.ann_dir, img_info['ann']['seg_map'])
        if efficient_test:
            gt_seg_map = seg_map
        else:
            gt_seg_map = mmcv.imread(
                seg_map, flag='unchanged', backend='pillow')
        gt_seg_maps.append(gt_seg_map)
    return gt_seg_maps

def get_classes_and_palette(self, classes=None, palette=None):
    """Get class names of current dataset.

    Args:
        classes (Sequence[str] | str | None): If classes is None, use
            default CLASSES defined by builtin dataset. If classes is a
            string, take it as a file name. The file contains the name of
            classes where each line contains one class name. If classes is
            a tuple or list, override the CLASSES defined by the dataset.
        palette (Sequence[Sequence[int]]] | np.ndarray | None):
            The palette of segmentation map. If None is given, random
            palette will be generated. Default: None
    """
    if classes is None:
        self.custom_classes = False
        return self.CLASSES, self.PALETTE

    self.custom_classes = True
    if isinstance(classes, str):
        # take it as a file path
        class_names = mmcv.list_from_file(classes)
    elif isinstance(classes, (tuple, list)):
        class_names = classes
    else:
        raise ValueError(f'Unsupported type {type(classes)} of classes.')

    if self.CLASSES:
        if not set(classes).issubset(self.CLASSES):
            raise ValueError('classes is not a subset of CLASSES.')

        # dictionary, its keys are the old label ids and its values
        # are the new label ids.
        # used for changing pixel labels in load_annotations.
        self.label_map = {}
        for i, c in enumerate(self.CLASSES):
            if c not in class_names:
                self.label_map[i] = -1
            else:
                self.label_map[i] = classes.index(c)

    palette = self.get_palette_for_custom_classes(class_names, palette)

    return class_names, palette

def get_palette_for_custom_classes(self, class_names, palette=None):

    if self.label_map is not None:
        # return subset of palette
        palette = []
        for old_id, new_id in sorted(
                self.label_map.items(), key=lambda x: x[1]):
            if new_id != -1:
                palette.append(self.PALETTE[old_id])
        palette = type(self.PALETTE)(palette)

    elif palette is None:
        if self.PALETTE is None:
            palette = np.random.randint(0, 255, size=(len(class_names), 3))
        else:
            palette = self.PALETTE

    return palette

def evaluate(self,
             results,
             metric='mIoU',
             logger=None,
             efficient_test=False,
             **kwargs):
    """Evaluate the dataset.

    Args:
        results (list): Testing results of the dataset.
        metric (str | list[str]): Metrics to be evaluated. 'mIoU',
            'mDice' and 'mFscore' are supported.
        logger (logging.Logger | None | str): Logger used for printing
            related information during evaluation. Default: None.

    Returns:
        dict[str, float]: Default metrics.
    """

    if isinstance(metric, str):
        metric = [metric]
    allowed_metrics = ['mIoU', 'mDice', 'mFscore']
    if not set(metric).issubset(set(allowed_metrics)):
        raise KeyError('metric {} is not supported'.format(metric))
    eval_results = {}
    gt_seg_maps = self.get_gt_seg_maps(efficient_test)
    if self.CLASSES is None:
        num_classes = len(
            reduce(np.union1d, [np.unique(_) for _ in gt_seg_maps]))
    else:
        num_classes = len(self.CLASSES)
    ret_metrics = eval_metrics(
        results,
        gt_seg_maps,
        num_classes,
        self.ignore_index,
        metric,
        label_map=self.label_map,
        reduce_zero_label=self.reduce_zero_label)

    if self.CLASSES is None:
        class_names = tuple(range(num_classes))
    else:
        class_names = self.CLASSES

    # summary table
    ret_metrics_summary = OrderedDict({
        ret_metric: np.round(np.nanmean(ret_metric_value) * 100, 2)
        for ret_metric, ret_metric_value in ret_metrics.items()
    })

    # each class table
    ret_metrics.pop('aAcc', None)
    ret_metrics_class = OrderedDict({
        ret_metric: np.round(ret_metric_value * 100, 2)
        for ret_metric, ret_metric_value in ret_metrics.items()
    })
    ret_metrics_class.update({'Class': class_names})
    ret_metrics_class.move_to_end('Class', last=False)

    # for logger
    class_table_data = PrettyTable()
    for key, val in ret_metrics_class.items():
        class_table_data.add_column(key, val)

    summary_table_data = PrettyTable()
    for key, val in ret_metrics_summary.items():
        if key == 'aAcc':
            summary_table_data.add_column(key, [val])
        else:
            summary_table_data.add_column('m' + key, [val])

    print_log('per class results:', logger)
    print_log('\n' + class_table_data.get_string(), logger=logger)
    print_log('Summary:', logger)
    print_log('\n' + summary_table_data.get_string(), logger=logger)

    # each metric dict
    for key, value in ret_metrics_summary.items():
        if key == 'aAcc':
            eval_results[key] = value / 100.0
        else:
            eval_results['m' + key] = value / 100.0

    ret_metrics_class.pop('Class', None)
    for key, value in ret_metrics_class.items():
        eval_results.update({
            key + '.' + str(name): value[idx] / 100.0
            for idx, name in enumerate(class_names)
        })

    if mmcv.is_list_of(results, str):
        for file_name in results:
            os.remove(file_name)
    return eval_results

I change "CLASSES" and "PALETTE" in custom.py.
And the error shows that it seems gt seg image is not converted the gray image and is still the color image.
How could I fix it? Thank you.

Metadata

Metadata

Assignees

Labels

No labels
No labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions