Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 12 additions & 7 deletions clip/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,16 +16,18 @@ def __init__(self, inplanes, planes, stride=1):
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu1 = nn.ReLU(inplace=True)

self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.relu2 = nn.ReLU(inplace=True)

self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()

self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu3 = nn.ReLU(inplace=True)

self.relu = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride

Expand All @@ -40,16 +42,16 @@ def __init__(self, inplanes, planes, stride=1):
def forward(self, x: torch.Tensor):
identity = x

out = self.relu(self.bn1(self.conv1(x)))
out = self.relu(self.bn2(self.conv2(out)))
out = self.relu1(self.bn1(self.conv1(x)))
out = self.relu2(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))

if self.downsample is not None:
identity = self.downsample(x)

out += identity
out = self.relu(out)
out = self.relu3(out)
return out


Expand Down Expand Up @@ -106,12 +108,14 @@ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
# the 3-layer stem
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(width // 2)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(width // 2)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.relu3 = nn.ReLU(inplace=True)
self.avgpool = nn.AvgPool2d(2)
self.relu = nn.ReLU(inplace=True)

# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
Expand All @@ -134,8 +138,9 @@ def _make_layer(self, planes, blocks, stride=1):

def forward(self, x):
def stem(x):
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
x = self.relu(bn(conv(x)))
x = self.relu1(self.bn1(self.conv1(x)))
x = self.relu2(self.bn2(self.conv2(x)))
x = self.relu3(self.bn3(self.conv3(x)))
x = self.avgpool(x)
return x

Expand Down