Skip to content

Conversation

@kbokis
Copy link
Contributor

@kbokis kbokis commented Mar 19, 2025

Comment on lines 143 to 152
$$\begin{aligned}
p(k+1) =\\
p(k) + f(k+1) =\\
2^{k+1}\cdot (k-1)+2 + 2^{k+1} \cdot (k+1)=\\
2^{k+1}\cdot k - 2^{k+1} + 2 + 2^{k+1}\cdot k + 2^{k+1}=\\
2^{k+1}\cdot k - \cancel{2^{k+1}} + 2 + 2^{k+1}\cdot k + \cancel{2^{k+1}}=\\
2^{k+1}\cdot k + 2^{k+1}\cdot k + 2=\\
2\cdot 2^{k+1} \cdot k + 2=\\
2^{k+2}\cdot k +2
\end{aligned}$$<br>
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

$$\begin{aligned} p(k+1) & = p(k) + f(k+1) \\ & = 2^{k+1}\cdot (k-1)+2 + 2^{k+1} \cdot (k+1) \\ & = 2^{k+1}\cdot k - 2^{k+1} + 2 + 2^{k+1}\cdot k + 2^{k+1} \\ & = 2^{k+1}\cdot k - \cancel{2^{k+1}} + 2 + 2^{k+1}\cdot k + \cancel{2^{k+1}} \\ & = 2^{k+1}\cdot k + 2^{k+1}\cdot k + 2 \\ & = 2\cdot 2^{k+1} \cdot k + 2 \\ & = 2^{k+2}\cdot k +2, \end{aligned}$$

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Αρκετά πιο όμορφο. Ευχαριστώ

@Dim131 Dim131 merged commit af19d17 into pdp-archive:master Mar 22, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants