tableconv is a prototype of software to convert tabular data from any format to any format.
uv tool install tableconv(or: pip install tableconv)
Convert JSON to CSV
tableconv test.json -o test.csvConvert CSV to JSON
tableconv test.csv -o test.jsonDump a Postgres table as JSON
tableconv postgresql://192.168.0.10:5432/test_db/my_table -o my_table.jsonDisplay a parquet file's data in a human-readable format
tableconv test.parquet -o ascii:-Convert CSV to a Markdown Table
tableconv test.csv -o md:-Dump the first 100 rows of a postgres table as JSON
tableconv postgresql://192.168.0.10:5432/test_db -q 'SELECT * FROM my_table ORDER BY id LIMIT 100' -o my_table.jsonCopy a few columns from one CSV into a new CSV. (in general, all functionality works on all of the supported data formats. So you can of course query with SQL on an Oracle database but it's also supported to query with SQL on JSON, SQL on Excel, and, here SQL on CSV)
tableconv test.csv -q 'SELECT time, name FROM data ORDER BY time DESC' -o output.csvAppend a few columns from a CSV into MySQL
tableconv test.csv -q 'SELECT time, name FROM data ORDER BY time DESC' -o mysql://localhost:3306/test_db/my_table?if_exists=appendExtract a report from a SQLite database into a new Google Spreadsheet
tableconv sqlite3://my_db.db -q 'SELECT name, COUNT(*) from occurrences ORDER BY 2 DESC LIMIT 10' -o "gsheets://:new:/?name=top_occurrences_$(date +'%Y_%m_%d')"Tableconv is a user interface prototype, not a new data transformation engine. The heavy lifting is credit primarily to pandas's io module and DuckDB's SQL engine. All the other disparate formats are mostly each implemented by specialized third party libraries (refer to the pyproject.toml for a complete list). Tableconv has just glued them all together behind a single common CLI interface to enable high-productivity by allowing you to learn one conversion UI once and not need to research and learn a new data model, a new query language, and a new tool suite every time you encounter an unfamiliar format and need to process it quickly.
- Comprehensive online & built-in documentation of all the parameters supported by each format adapter
- Further explore the experimental vision of computing where all services are wrangled to be tables. RESTful tables as the metaphor for 100% of computer interactions. No app switching. All interactions represented as tabular data operations. You want to read your email?
tc email -Q 'where read=False order by date desc limit 10'. You want to respond?echo addr,body\nexample@exampl.org,Thanks for the email!' | tc csv:- -o email - Create a consistent configuration and service authentication story.
- Fix parameters to all be made consistent in behavior/naming/etc across adapters.
Launch an interactive SQL shell to inspect data from a CSV file in the terminal
tableconv test.csv -iArrays can be thought of as one dimensional tables, so tableconv has strong support for array formats too. Here is an example of converting a copy/pasted newline-deliminated list into a list in the Python list syntax.
pbpaste | tableconv list:- -o pylist:-Or in YAML's sequence syntax:
pbpaste | tableconv list:- -o yamlsequence:-Or as a full single-dimensional CSV table:
pbpaste | tableconv list:- -o csv:-- odo
- Singer
- ODBC/JDBC
- osquery
- pandas
- duckdb
usage: tableconv SOURCE_URL [-q QUERY_SQL] [-o DEST_URL]
positional arguments:
SOURCE_URL Specify the data source URL.
options:
-h, --help show this help message and exit
-q, -Q, --query SOURCE_QUERY
Query to run on the source. Even for non-SQL datasources (e.g. csv or
json), SQL querying is still supported, try `SELECT * FROM data`.
-F, --filter INTERMEDIATE_FILTER_SQL
Filter (i.e. transform) the input data using a SQL query operating on the
dataset in memory using DuckDB SQL.
-o, --dest, --out, --output DEST_URL
Specify the data destination URL. If this destination already exists, be
aware that the default behavior is to overwrite.
-i, --interactive Enter interactive REPL query mode.
--open Open resulting file/url in the operating system desktop environment. (not
supported for all destination types)
--autocache, --cache Cache network data, and reuse cached data.
-v, --verbose, --debug
Show debug details, including API calls and error sources.
--version Show version number and exit
--quiet Only display errors.
--print, --print-dest
Print resulting URL/path to stdout, for chaining with other commands.
--schema, --coerce-schema SCHEMA_COERCION
Coerce source schema according to a schema definition. (WARNING:
experimental feature)
--restrict-schema Exclude all columns not included in the SCHEMA_COERCION definition.
(WARNING: experimental feature)
--daemonize Tableconv startup time (python startup time) is slow. To mitigate that,
you can first run tableconv as a daemon, and then all future invocations
will be fast. (while daemon is still alive) (WARNING: experimental
feature)
--multitable, --multifile
Convert entire "database"s of tables from one format to another, such as
folders with many csvs, a multi-tab spreadsheet, or an actual RDBMS
(WARNING: This is an experimental mode, very rough, details undocumented)
supported url schemes:
ascii:- (dest only)
asciibox:- (dest only)
asciifancygrid:- (dest only)
asciigrid:- (dest only)
asciilite:- (dest only)
asciipipe:- (dest only)
asciiplain:- (dest only)
asciipresto:- (dest only)
asciipretty:- (dest only)
asciipsql:- (dest only)
asciirich:- (dest only)
asciisimple:- (dest only)
awsathena://eu-central-1
awsdynamodb://eu-central-1/example_table (source only)
awslogs://eu-central-1//aws/lambda/example-function (source only)
cmd://ls -l example (source only)
csa:-
example.avro
example.binpb (source only)
example.csv
example.dta
example.duckdb
example.feather
example.fixedwidth
example.fwf
example.h5
example.hdf5
example.html
example.json
example.jsonl
example.jsonlines
example.ldjson
example.msgpack
example.ndjson
example.numbers (source only)
example.odf
example.ods
example.odt
example.orc (source only)
example.parquet
example.pcap (source only)
example.pcapng (source only)
example.pickledf
example.protob (source only)
example.protobuf (source only)
example.py
example.python
example.toml
example.tsv
example.xls
example.xlsb
example.xlsm
example.xlsx
example.yaml
example.yml
file_per_row:///tmp/example (each file is considered a (filename,value) record)
gsheets://:new:
iceberg:///tmp/warehouse?catalog_uri=sqlite:////tmp/warehouse/pyiceberg_catalog.db
jc://ls -l example (source only)
jiraformat:- (dest only)
jsonarray:-
jsondict:- (source only)
latex:- (dest only)
leveldblog:output-0 (source only)
list:-
markdown:- (dest only)
md:- (dest only)
mediawikiformat:- (dest only)
moinmoinformat:- (dest only)
mssql://127.0.0.1:5432/example_db
mysql://127.0.0.1:5432/example_db
nestedlist:-
oracle://127.0.0.1:5432/example_db
osquery://processes (source only)
postgis://127.0.0.1:5432/example_db
postgres://127.0.0.1:5432/example_db
postgresql://127.0.0.1:5432/example_db
pylist:-
pythonlist:-
rich:- (dest only)
rst:- (dest only)
sh://ls -l example (source only)
smartsheet://SHEET_ID (source only)
sql_literal:- (dest only)
sql_values:- (dest only)
sqlite3:///tmp/example.db
sqlite:///tmp/example.db
sumologic://?from=2021-03-01T00:00:00Z&to=2021-05-03T00:00:00Z (source only)
tex:- (dest only)
tsa:-
yamlsequence:-
help & support:
https://github.com/personalcomputer/tableconv/issues/new
In [1]: import tableconv
In [2]: # tableconv test.csv -q 'SELECT time, name FROM data ORDER BY time DESC' -o gsheets://:new:/?name=test
In [3]: tableconv.load_url('test.csv', query='SELECT time, name FROM data ORDER BY time DESC').dump_to_url('gsheets://:new:', params={'name': 'test'})Quickstart Example: More advanced API usage: Importing in data from an arbitrary URL to a python dictionary
In [1]: import tableconv
In [2]: tableconv.load_url('postgresql://localhost:5432/test_db/cities').as_dict_records()
Out[2]:
[
{'LatD': 41, 'LatM': 5, 'LatS': 59, 'NS': 'N', 'LonD': 80, 'LonM': 39, 'LonS': 0, 'EW': 'W', 'City': 'Youngstown', 'State': 'OH'},
{'LatD': 42, 'LatM': 52, 'LatS': 48, 'NS': 'N', 'LonD': 97, 'LonM': 23, 'LonS': 23, 'EW': 'W', 'City': 'Yankton', 'State': 'SD'},
[...]
](Reference documentation pending)