-
-
Notifications
You must be signed in to change notification settings - Fork 2
Open
Labels
enhancementImprovement to existing functionalityImprovement to existing functionalityequity-eligibleContributions eligible for equity participationContributions eligible for equity participationhigh-impactHigh impact features with commercial potentialHigh impact features with commercial potential
Milestone
Description
Issue: Grafana Plugin and Monitoring Systems Integration
📊 Feature Request: Grafana Plugin and Cloud Monitoring Integration
Problem Statement
Currently, our SQL Graph Visualizer application operates as a standalone system, isolated from existing monitoring and observability infrastructure. This creates significant challenges for organizations that want to integrate our database performance visualization with their existing monitoring stack:
- Isolated Monitoring: Cannot integrate with existing Grafana dashboards and monitoring workflows
- Context Switching: Users must leave their primary monitoring tools to view SQL graph performance data
- Limited Alerting: No integration with existing alerting systems (PagerDuty, Slack, etc.)
- Cloud Native Gap: Not easily deployable as part of modern cloud-native monitoring stacks
- Kubernetes Blind Spot: No native integration with Kubernetes monitoring and service mesh observability
- Data Silos: Performance insights are separated from infrastructure metrics, APM data, and business metrics
Current Limitations
# Current isolated deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: sql-graph-visualizer-standalone
# Runs in isolation, no integration with monitoring stackProposed Solution
Transform the SQL Graph Visualizer into a cloud-native monitoring component that integrates seamlessly with existing observability platforms through:
- Grafana Plugin/Panel for embedded graph visualizations
- Prometheus Metrics Export for standard observability integration
- Kubernetes Operator for native K8s monitoring
- Cloud Provider Integrations (AWS CloudWatch, GCP Monitoring, Azure Monitor)
- Service Mesh Integration (Istio, Linkerd, Consul Connect)
Integration Architecture
1. Grafana Plugin Architecture
// Grafana panel plugin structure
@grafana/toolkit panel plugin: sql-graph-performance
├── src/
│ ├── components/
│ │ ├── GraphVisualization.tsx // Interactive graph display
│ │ ├── PerformanceMetrics.tsx // Live metrics overlay
│ │ ├── BottleneckAlerts.tsx // Real-time bottleneck detection
│ │ └── QueryAnalyzer.tsx // SQL query performance analysis
│ ├── datasource/
│ │ ├── SQLGraphDataSource.ts // Custom datasource for API integration
│ │ └── PrometheusAdapter.ts // Prometheus metrics integration
│ ├── types/
│ │ ├── GraphData.ts // Graph data structures
│ │ └── PerformanceMetrics.ts // Performance metric types
│ └── plugin.json // Plugin configuration2. Cloud-Native Deployment Options
Grafana Sidecar Pattern
apiVersion: apps/v1
kind: Deployment
metadata:
name: grafana-with-sql-graph
spec:
template:
spec:
containers:
- name: grafana
image: grafana/grafana:latest
ports:
- containerPort: 3000
- name: sql-graph-collector
image: sql-graph-visualizer:latest
args: ["--mode=collector", "--export=prometheus"]
ports:
- containerPort: 9090
env:
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: db-credentials
key: urlPrometheus Exporter Pattern
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: sql-graph-exporter
spec:
template:
spec:
containers:
- name: sql-graph-exporter
image: sql-graph-visualizer:exporter
ports:
- containerPort: 9191
name: metrics
args:
- "--config=/config/sql-graph-config.yml"
- "--metrics.listen-address=0.0.0.0:9191"
- "--web.telemetry-path=/metrics"Service Mesh Integration
# Istio ServiceMonitor for automatic metrics collection
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: sql-graph-performance
spec:
selector:
matchLabels:
app: sql-graph-visualizer
endpoints:
- port: metrics
path: /metrics
interval: 30sGrafana Plugin Specification
1. Panel Configuration
interface SQLGraphPanelOptions {
// Data source configuration
datasource: {
apiUrl: string;
authMethod: 'api-key' | 'jwt' | 'oauth';
refreshInterval: number;
};
// Visualization options
visualization: {
layout: 'force-directed' | 'hierarchical' | 'circular';
nodeSize: 'fixed' | 'proportional' | 'performance-based';
edgeThickness: 'uniform' | 'performance-based';
colorScheme: 'performance' | 'severity' | 'custom';
};
// Performance overlays
performance: {
showMetrics: boolean;
metricsPosition: 'overlay' | 'sidebar' | 'bottom';
alertThresholds: {
highLatency: number;
lowThroughput: number;
errorRate: number;
};
};
// Time range and filtering
filtering: {
timeRange: string;
databaseFilter: string[];
tableFilter: string[];
queryTypeFilter: string[];
};
}2. Custom Data Source
class SQLGraphDataSource extends DataSourceApi<SQLGraphQuery> {
constructor(instanceSettings: DataSourceInstanceSettings) {
super(instanceSettings);
}
async query(options: DataQueryRequest<SQLGraphQuery>): Promise<DataQueryResponse> {
const { range, targets } = options;
// Fetch graph data from SQL Graph Visualizer API
const graphData = await this.fetchGraphData(range, targets);
// Transform to Grafana format
return {
data: this.transformToGrafanaFormat(graphData)
};
}
async testDatasource(): Promise<TestDataSourceResponse> {
// Test connection to SQL Graph Visualizer API
return this.healthCheck();
}
}3. Interactive Graph Panel
export const GraphPanel: React.FC<PanelProps<SQLGraphPanelOptions>> = ({
data, timeRange, options, width, height
}) => {
const [selectedNode, setSelectedNode] = useState<GraphNode | null>(null);
const [performanceData, setPerformanceData] = useState<PerformanceMetrics>();
return (
<div className="sql-graph-panel">
{/* Interactive graph visualization */}
<GraphVisualization
data={data}
options={options.visualization}
onNodeSelect={setSelectedNode}
width={width}
height={height}
/>
{/* Performance metrics overlay */}
{options.performance.showMetrics && (
<PerformanceOverlay
node={selectedNode}
metrics={performanceData}
position={options.performance.metricsPosition}
/>
)}
{/* Real-time alerts */}
<AlertsPanel
thresholds={options.performance.alertThresholds}
timeRange={timeRange}
/>
</div>
);
};Prometheus Metrics Export
1. Core Metrics Schema
// Prometheus metrics exported by the application
var (
// Query performance metrics
sqlQueryDurationSeconds = prometheus.NewHistogramVec(
prometheus.HistogramOpts{
Name: "sql_graph_query_duration_seconds",
Help: "SQL query execution time in seconds",
},
[]string{"database", "table", "query_type", "status"},
)
sqlQueryTotal = prometheus.NewCounterVec(
prometheus.CounterOpts{
Name: "sql_graph_queries_total",
Help: "Total number of SQL queries executed",
},
[]string{"database", "table", "query_type", "status"},
)
// Graph performance metrics
graphTransformDurationSeconds = prometheus.NewHistogram(
prometheus.HistogramOpts{
Name: "sql_graph_transform_duration_seconds",
Help: "Graph transformation duration in seconds",
},
)
graphNodesTotal = prometheus.NewGaugeVec(
prometheus.GaugeOpts{
Name: "sql_graph_nodes_total",
Help: "Total number of nodes in the graph",
},
[]string{"node_type"},
)
graphRelationshipsTotal = prometheus.NewGaugeVec(
prometheus.GaugeOpts{
Name: "sql_graph_relationships_total",
Help: "Total number of relationships in the graph",
},
[]string{"relationship_type"},
)
// Performance bottleneck metrics
performanceBottlenecksActive = prometheus.NewGaugeVec(
prometheus.GaugeOpts{
Name: "sql_graph_bottlenecks_active",
Help: "Number of active performance bottlenecks",
},
[]string{"severity", "database", "table"},
)
performanceHotspotScore = prometheus.NewGaugeVec(
prometheus.GaugeOpts{
Name: "sql_graph_hotspot_score",
Help: "Performance hotspot score (0-100)",
},
[]string{"database", "table"},
)
)2. Metrics Collection Service
// MetricsCollector service for Prometheus integration
type MetricsCollector struct {
registry prometheus.Registry
metricsServer *http.Server
dataCollector *performance.DataCollector
updateInterval time.Duration
}
func (c *MetricsCollector) Start(ctx context.Context) error {
// Start metrics collection loop
go c.collectMetrics(ctx)
// Start Prometheus HTTP server
http.Handle("/metrics", promhttp.HandlerFor(&c.registry, promhttp.HandlerOpts{}))
http.Handle("/health", http.HandlerFunc(c.healthCheck))
return c.metricsServer.ListenAndServe()
}
func (c *MetricsCollector) collectMetrics(ctx context.Context) {
ticker := time.NewTicker(c.updateInterval)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
// Collect current performance data
data, err := c.dataCollector.GetCurrentMetrics(ctx)
if err != nil {
log.WithError(err).Error("Failed to collect metrics")
continue
}
// Update Prometheus metrics
c.updatePrometheusMetrics(data)
}
}
}Kubernetes Operator
1. Custom Resource Definition
apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
name: sqlgraphmonitors.monitoring.sqlgraph.io
spec:
group: monitoring.sqlgraph.io
versions:
- name: v1
served: true
storage: true
schema:
openAPIV3Schema:
type: object
properties:
spec:
type: object
properties:
databases:
type: array
items:
type: object
properties:
name: {type: string}
type: {type: string, enum: ["mysql", "postgresql"]}
connectionSecret: {type: string}
grafanaIntegration:
type: object
properties:
enabled: {type: boolean}
dashboardConfigMap: {type: string}
prometheusIntegration:
type: object
properties:
enabled: {type: boolean}
serviceMonitor: {type: boolean}
scrapeInterval: {type: string}
status:
type: object
properties:
phase: {type: string}
monitoredDatabases: {type: integer}
lastUpdate: {type: string}2. Operator Controller
// SQLGraphMonitor controller
type SQLGraphMonitorReconciler struct {
client.Client
Scheme *runtime.Scheme
Log logr.Logger
}
func (r *SQLGraphMonitorReconciler) Reconcile(ctx context.Context, req ctrl.Request) (ctrl.Result, error) {
log := r.Log.WithValues("sqlgraphmonitor", req.NamespacedName)
// Fetch SQLGraphMonitor instance
var monitor monitoringv1.SQLGraphMonitor
if err := r.Get(ctx, req.NamespacedName, &monitor); err != nil {
return ctrl.Result{}, client.IgnoreNotFound(err)
}
// Create or update monitoring deployment
if err := r.reconcileDeployment(ctx, &monitor); err != nil {
return ctrl.Result{}, err
}
// Create or update Grafana dashboard
if monitor.Spec.GrafanaIntegration.Enabled {
if err := r.reconcileGrafanaDashboard(ctx, &monitor); err != nil {
return ctrl.Result{}, err
}
}
// Create or update Prometheus ServiceMonitor
if monitor.Spec.PrometheusIntegration.ServiceMonitor {
if err := r.reconcileServiceMonitor(ctx, &monitor); err != nil {
return ctrl.Result{}, err
}
}
return ctrl.Result{RequeueAfter: time.Minute * 5}, nil
}Cloud Provider Integrations
1. AWS CloudWatch Integration
// CloudWatch metrics publisher
type CloudWatchPublisher struct {
client cloudwatchlogs.CloudWatchLogsAPI
namespace string
}
func (p *CloudWatchPublisher) PublishMetrics(ctx context.Context, metrics *PerformanceMetrics) error {
data := []*cloudwatch.MetricDatum{
{
MetricName: aws.String("SQLGraphQueryLatency"),
Value: aws.Float64(metrics.AverageLatency),
Unit: aws.String("Milliseconds"),
Dimensions: []*cloudwatch.Dimension{
{Name: aws.String("Database"), Value: aws.String(metrics.Database)},
{Name: aws.String("Table"), Value: aws.String(metrics.Table)},
},
},
{
MetricName: aws.String("SQLGraphQueriesPerSecond"),
Value: aws.Float64(metrics.QueriesPerSecond),
Unit: aws.String("Count/Second"),
},
}
_, err := p.client.PutMetricDataWithContext(ctx, &cloudwatch.PutMetricDataInput{
Namespace: aws.String(p.namespace),
MetricData: data,
})
return err
}2. Google Cloud Monitoring
// Google Cloud Monitoring integration
type GCPMonitoringPublisher struct {
client monitoring.MetricClient
projectID string
}
func (p *GCPMonitoringPublisher) PublishMetrics(ctx context.Context, metrics *PerformanceMetrics) error {
series := []*monitoringpb.TimeSeries{
{
Metric: &metricpb.Metric{
Type: "custom.googleapis.com/sql_graph/query_latency",
Labels: map[string]string{
"database": metrics.Database,
"table": metrics.Table,
},
},
Points: []*monitoringpb.Point{
{
Value: &monitoringpb.TypedValue{
Value: &monitoringpb.TypedValue_DoubleValue{
DoubleValue: metrics.AverageLatency,
},
},
Interval: &monitoringpb.TimeInterval{
EndTime: timestamppb.Now(),
},
},
},
},
}
return p.client.CreateTimeSeries(ctx, &monitoringpb.CreateTimeSeriesRequest{
Name: fmt.Sprintf("projects/%s", p.projectID),
TimeSeries: series,
})
}Usage Examples
1. Grafana Dashboard Integration
# Grafana dashboard configuration
apiVersion: v1
kind: ConfigMap
metadata:
name: sql-graph-dashboard
data:
dashboard.json: |
{
"dashboard": {
"title": "SQL Graph Performance Monitor",
"panels": [
{
"title": "Database Performance Graph",
"type": "sql-graph-panel",
"datasource": "sql-graph-datasource",
"targets": [
{
"database": "production",
"timeRange": "$__timeRange",
"refreshInterval": "30s"
}
],
"options": {
"visualization": {
"layout": "force-directed",
"colorScheme": "performance"
},
"performance": {
"showMetrics": true,
"alertThresholds": {
"highLatency": 1000,
"errorRate": 5
}
}
}
},
{
"title": "Query Performance Metrics",
"type": "graph",
"datasource": "prometheus",
"targets": [
{
"expr": "rate(sql_graph_query_duration_seconds[5m])",
"legend": "Query Latency"
},
{
"expr": "sql_graph_bottlenecks_active",
"legend": "Active Bottlenecks"
}
]
}
]
}
}2. Kubernetes Monitoring Setup
# Complete monitoring stack deployment
apiVersion: monitoring.sqlgraph.io/v1
kind: SQLGraphMonitor
metadata:
name: production-monitoring
spec:
databases:
- name: "main-db"
type: "postgresql"
connectionSecret: "db-credentials"
- name: "analytics-db"
type: "mysql"
connectionSecret: "analytics-credentials"
grafanaIntegration:
enabled: true
dashboardConfigMap: "sql-graph-dashboard"
prometheusIntegration:
enabled: true
serviceMonitor: true
scrapeInterval: "30s"
alerting:
enabled: true
rules:
- name: "high-query-latency"
condition: "sql_graph_query_duration_seconds > 1"
severity: "warning"
- name: "critical-bottleneck"
condition: "sql_graph_bottlenecks_active{severity=\"critical\"} > 0"
severity: "critical"3. Service Mesh Integration
# Istio integration for automatic sidecar metrics
apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:
name: sql-graph-metrics
spec:
configPatches:
- applyTo: HTTP_FILTER
match:
listener:
filterChain:
filter:
name: "envoy.filters.network.http_connection_manager"
patch:
operation: INSERT_BEFORE
value:
name: envoy.filters.http.wasm
typed_config:
"@type": type.googleapis.com/envoy.extensions.filters.http.wasm.v3.Wasm
config:
configuration:
"@type": type.googleapis.com/google.protobuf.StringValue
value: |
{
"sql_graph_config": {
"metrics_endpoint": "/metrics",
"database_connections": ["main-db", "analytics-db"]
}
}Benefits
- 🏢 Enterprise Integration: Seamless integration with existing monitoring infrastructure
- 📊 Unified Dashboards: Single pane of glass for all monitoring data
- 🚨 Integrated Alerting: Performance alerts through existing channels
- ☁️ Cloud Native: Native support for modern cloud platforms
- 📈 Standardized Metrics: Prometheus-compatible metrics for ecosystem compatibility
- 🔧 Kubernetes Native: First-class Kubernetes operator support
- 🌐 Service Mesh Ready: Integration with modern service mesh architectures
- 📱 Mobile Ready: Grafana mobile app compatibility
Implementation Strategy
Phase 1: Core Grafana Plugin (Week 1-2)
- Develop basic Grafana panel plugin
- Create custom data source for API integration
- Implement interactive graph visualization
- Add basic performance metrics overlay
Phase 2: Prometheus Integration (Week 3)
- Implement Prometheus metrics exporter
- Add comprehensive metrics collection
- Create standard Grafana dashboards
- Add alerting rules templates
Phase 3: Kubernetes Operator (Week 4)
- Develop Kubernetes operator
- Create Custom Resource Definitions
- Implement automated deployment and configuration
- Add ServiceMonitor integration
Phase 4: Cloud Provider Integrations (Week 5)
- Implement AWS CloudWatch integration
- Add Google Cloud Monitoring support
- Create Azure Monitor integration
- Add service mesh integrations
Phase 5: Advanced Features (Week 6)
- Add advanced alerting capabilities
- Implement automated scaling based on performance metrics
- Create performance baseline recommendations
- Add ML-based anomaly detection integration
Success Metrics
- ✅ Reduced monitoring tool switching by 80%
- ✅ Faster incident response through integrated alerting
- ✅ Increased adoption in cloud-native environments
- ✅ Better performance visibility across the organization
- ✅ Standardized metrics adoption across teams
Security Considerations
- Secure API Authentication: JWT/OAuth integration with existing identity providers
- Network Policies: Kubernetes network policies for secure communication
- Secret Management: Integration with Kubernetes secrets and cloud secret managers
- RBAC Integration: Role-based access control aligned with existing Grafana/K8s permissions
- Audit Logging: Complete audit trail of all monitoring activities
Related Issues
- Remote API/gRPC Control Interface (provides API foundation)
- Performance Graph Snapshot System (enhanced with monitoring integration)
- CLI Commands Unification (operator uses unified CLI)
Priority: High
Complexity: High
Estimated Effort: 5-6 weeks
Dependencies: Remote API/gRPC Control Interface
Implementation Checklist
- Design Grafana plugin architecture and API
- Develop interactive graph panel plugin
- Create custom SQL Graph data source
- Implement Prometheus metrics exporter
- Create standard Grafana dashboard templates
- Develop Kubernetes operator with CRDs
- Add cloud provider monitoring integrations
- Implement service mesh integration support
- Create comprehensive documentation and examples
- Add automated testing for all integrations
- Publish Grafana plugin to official registry
- Create Helm charts for easy deployment
Metadata
Metadata
Assignees
Labels
enhancementImprovement to existing functionalityImprovement to existing functionalityequity-eligibleContributions eligible for equity participationContributions eligible for equity participationhigh-impactHigh impact features with commercial potentialHigh impact features with commercial potential