Skip to content

Grafana Plugin and Monitoring Systems Integration #21

@peter7775

Description

@peter7775

Issue: Grafana Plugin and Monitoring Systems Integration

📊 Feature Request: Grafana Plugin and Cloud Monitoring Integration

Problem Statement

Currently, our SQL Graph Visualizer application operates as a standalone system, isolated from existing monitoring and observability infrastructure. This creates significant challenges for organizations that want to integrate our database performance visualization with their existing monitoring stack:

  • Isolated Monitoring: Cannot integrate with existing Grafana dashboards and monitoring workflows
  • Context Switching: Users must leave their primary monitoring tools to view SQL graph performance data
  • Limited Alerting: No integration with existing alerting systems (PagerDuty, Slack, etc.)
  • Cloud Native Gap: Not easily deployable as part of modern cloud-native monitoring stacks
  • Kubernetes Blind Spot: No native integration with Kubernetes monitoring and service mesh observability
  • Data Silos: Performance insights are separated from infrastructure metrics, APM data, and business metrics

Current Limitations

# Current isolated deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: sql-graph-visualizer-standalone
# Runs in isolation, no integration with monitoring stack

Proposed Solution

Transform the SQL Graph Visualizer into a cloud-native monitoring component that integrates seamlessly with existing observability platforms through:

  1. Grafana Plugin/Panel for embedded graph visualizations
  2. Prometheus Metrics Export for standard observability integration
  3. Kubernetes Operator for native K8s monitoring
  4. Cloud Provider Integrations (AWS CloudWatch, GCP Monitoring, Azure Monitor)
  5. Service Mesh Integration (Istio, Linkerd, Consul Connect)

Integration Architecture

1. Grafana Plugin Architecture

// Grafana panel plugin structure
@grafana/toolkit panel plugin: sql-graph-performance

├── src/
   ├── components/
      ├── GraphVisualization.tsx      // Interactive graph display  
      ├── PerformanceMetrics.tsx      // Live metrics overlay
      ├── BottleneckAlerts.tsx        // Real-time bottleneck detection
      └── QueryAnalyzer.tsx           // SQL query performance analysis
   ├── datasource/
      ├── SQLGraphDataSource.ts       // Custom datasource for API integration
      └── PrometheusAdapter.ts        // Prometheus metrics integration
   ├── types/
      ├── GraphData.ts                // Graph data structures
      └── PerformanceMetrics.ts       // Performance metric types
   └── plugin.json                     // Plugin configuration

2. Cloud-Native Deployment Options

Grafana Sidecar Pattern
apiVersion: apps/v1
kind: Deployment
metadata:
  name: grafana-with-sql-graph
spec:
  template:
    spec:
      containers:
      - name: grafana
        image: grafana/grafana:latest
        ports:
        - containerPort: 3000
      - name: sql-graph-collector
        image: sql-graph-visualizer:latest
        args: ["--mode=collector", "--export=prometheus"]
        ports:
        - containerPort: 9090
        env:
        - name: DATABASE_URL
          valueFrom:
            secretKeyRef:
              name: db-credentials
              key: url
Prometheus Exporter Pattern
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: sql-graph-exporter
spec:
  template:
    spec:
      containers:
      - name: sql-graph-exporter
        image: sql-graph-visualizer:exporter
        ports:
        - containerPort: 9191
          name: metrics
        args:
        - "--config=/config/sql-graph-config.yml"
        - "--metrics.listen-address=0.0.0.0:9191"
        - "--web.telemetry-path=/metrics"
Service Mesh Integration
# Istio ServiceMonitor for automatic metrics collection
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: sql-graph-performance
spec:
  selector:
    matchLabels:
      app: sql-graph-visualizer
  endpoints:
  - port: metrics
    path: /metrics
    interval: 30s

Grafana Plugin Specification

1. Panel Configuration

interface SQLGraphPanelOptions {
  // Data source configuration
  datasource: {
    apiUrl: string;
    authMethod: 'api-key' | 'jwt' | 'oauth';
    refreshInterval: number;
  };
  
  // Visualization options
  visualization: {
    layout: 'force-directed' | 'hierarchical' | 'circular';
    nodeSize: 'fixed' | 'proportional' | 'performance-based';
    edgeThickness: 'uniform' | 'performance-based';
    colorScheme: 'performance' | 'severity' | 'custom';
  };
  
  // Performance overlays
  performance: {
    showMetrics: boolean;
    metricsPosition: 'overlay' | 'sidebar' | 'bottom';
    alertThresholds: {
      highLatency: number;
      lowThroughput: number;
      errorRate: number;
    };
  };
  
  // Time range and filtering
  filtering: {
    timeRange: string;
    databaseFilter: string[];
    tableFilter: string[];
    queryTypeFilter: string[];
  };
}

2. Custom Data Source

class SQLGraphDataSource extends DataSourceApi<SQLGraphQuery> {
  constructor(instanceSettings: DataSourceInstanceSettings) {
    super(instanceSettings);
  }

  async query(options: DataQueryRequest<SQLGraphQuery>): Promise<DataQueryResponse> {
    const { range, targets } = options;
    
    // Fetch graph data from SQL Graph Visualizer API
    const graphData = await this.fetchGraphData(range, targets);
    
    // Transform to Grafana format
    return {
      data: this.transformToGrafanaFormat(graphData)
    };
  }

  async testDatasource(): Promise<TestDataSourceResponse> {
    // Test connection to SQL Graph Visualizer API
    return this.healthCheck();
  }
}

3. Interactive Graph Panel

export const GraphPanel: React.FC<PanelProps<SQLGraphPanelOptions>> = ({
  data, timeRange, options, width, height
}) => {
  const [selectedNode, setSelectedNode] = useState<GraphNode | null>(null);
  const [performanceData, setPerformanceData] = useState<PerformanceMetrics>();

  return (
    <div className="sql-graph-panel">
      {/* Interactive graph visualization */}
      <GraphVisualization
        data={data}
        options={options.visualization}
        onNodeSelect={setSelectedNode}
        width={width}
        height={height}
      />
      
      {/* Performance metrics overlay */}
      {options.performance.showMetrics && (
        <PerformanceOverlay
          node={selectedNode}
          metrics={performanceData}
          position={options.performance.metricsPosition}
        />
      )}
      
      {/* Real-time alerts */}
      <AlertsPanel
        thresholds={options.performance.alertThresholds}
        timeRange={timeRange}
      />
    </div>
  );
};

Prometheus Metrics Export

1. Core Metrics Schema

// Prometheus metrics exported by the application
var (
    // Query performance metrics
    sqlQueryDurationSeconds = prometheus.NewHistogramVec(
        prometheus.HistogramOpts{
            Name: "sql_graph_query_duration_seconds",
            Help: "SQL query execution time in seconds",
        },
        []string{"database", "table", "query_type", "status"},
    )
    
    sqlQueryTotal = prometheus.NewCounterVec(
        prometheus.CounterOpts{
            Name: "sql_graph_queries_total", 
            Help: "Total number of SQL queries executed",
        },
        []string{"database", "table", "query_type", "status"},
    )
    
    // Graph performance metrics
    graphTransformDurationSeconds = prometheus.NewHistogram(
        prometheus.HistogramOpts{
            Name: "sql_graph_transform_duration_seconds",
            Help: "Graph transformation duration in seconds",
        },
    )
    
    graphNodesTotal = prometheus.NewGaugeVec(
        prometheus.GaugeOpts{
            Name: "sql_graph_nodes_total",
            Help: "Total number of nodes in the graph",
        },
        []string{"node_type"},
    )
    
    graphRelationshipsTotal = prometheus.NewGaugeVec(
        prometheus.GaugeOpts{
            Name: "sql_graph_relationships_total", 
            Help: "Total number of relationships in the graph",
        },
        []string{"relationship_type"},
    )
    
    // Performance bottleneck metrics
    performanceBottlenecksActive = prometheus.NewGaugeVec(
        prometheus.GaugeOpts{
            Name: "sql_graph_bottlenecks_active",
            Help: "Number of active performance bottlenecks",
        },
        []string{"severity", "database", "table"},
    )
    
    performanceHotspotScore = prometheus.NewGaugeVec(
        prometheus.GaugeOpts{
            Name: "sql_graph_hotspot_score",
            Help: "Performance hotspot score (0-100)",
        },
        []string{"database", "table"},
    )
)

2. Metrics Collection Service

// MetricsCollector service for Prometheus integration
type MetricsCollector struct {
    registry       prometheus.Registry
    metricsServer  *http.Server
    dataCollector  *performance.DataCollector
    updateInterval time.Duration
}

func (c *MetricsCollector) Start(ctx context.Context) error {
    // Start metrics collection loop
    go c.collectMetrics(ctx)
    
    // Start Prometheus HTTP server
    http.Handle("/metrics", promhttp.HandlerFor(&c.registry, promhttp.HandlerOpts{}))
    http.Handle("/health", http.HandlerFunc(c.healthCheck))
    
    return c.metricsServer.ListenAndServe()
}

func (c *MetricsCollector) collectMetrics(ctx context.Context) {
    ticker := time.NewTicker(c.updateInterval)
    defer ticker.Stop()
    
    for {
        select {
        case <-ctx.Done():
            return
        case <-ticker.C:
            // Collect current performance data
            data, err := c.dataCollector.GetCurrentMetrics(ctx)
            if err != nil {
                log.WithError(err).Error("Failed to collect metrics")
                continue
            }
            
            // Update Prometheus metrics
            c.updatePrometheusMetrics(data)
        }
    }
}

Kubernetes Operator

1. Custom Resource Definition

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
  name: sqlgraphmonitors.monitoring.sqlgraph.io
spec:
  group: monitoring.sqlgraph.io
  versions:
  - name: v1
    served: true
    storage: true
    schema:
      openAPIV3Schema:
        type: object
        properties:
          spec:
            type: object
            properties:
              databases:
                type: array
                items:
                  type: object
                  properties:
                    name: {type: string}
                    type: {type: string, enum: ["mysql", "postgresql"]}
                    connectionSecret: {type: string}
              grafanaIntegration:
                type: object
                properties:
                  enabled: {type: boolean}
                  dashboardConfigMap: {type: string}
              prometheusIntegration:
                type: object
                properties:
                  enabled: {type: boolean}
                  serviceMonitor: {type: boolean}
                  scrapeInterval: {type: string}
          status:
            type: object
            properties:
              phase: {type: string}
              monitoredDatabases: {type: integer}
              lastUpdate: {type: string}

2. Operator Controller

// SQLGraphMonitor controller
type SQLGraphMonitorReconciler struct {
    client.Client
    Scheme *runtime.Scheme
    Log    logr.Logger
}

func (r *SQLGraphMonitorReconciler) Reconcile(ctx context.Context, req ctrl.Request) (ctrl.Result, error) {
    log := r.Log.WithValues("sqlgraphmonitor", req.NamespacedName)
    
    // Fetch SQLGraphMonitor instance
    var monitor monitoringv1.SQLGraphMonitor
    if err := r.Get(ctx, req.NamespacedName, &monitor); err != nil {
        return ctrl.Result{}, client.IgnoreNotFound(err)
    }
    
    // Create or update monitoring deployment
    if err := r.reconcileDeployment(ctx, &monitor); err != nil {
        return ctrl.Result{}, err
    }
    
    // Create or update Grafana dashboard
    if monitor.Spec.GrafanaIntegration.Enabled {
        if err := r.reconcileGrafanaDashboard(ctx, &monitor); err != nil {
            return ctrl.Result{}, err
        }
    }
    
    // Create or update Prometheus ServiceMonitor
    if monitor.Spec.PrometheusIntegration.ServiceMonitor {
        if err := r.reconcileServiceMonitor(ctx, &monitor); err != nil {
            return ctrl.Result{}, err
        }
    }
    
    return ctrl.Result{RequeueAfter: time.Minute * 5}, nil
}

Cloud Provider Integrations

1. AWS CloudWatch Integration

// CloudWatch metrics publisher
type CloudWatchPublisher struct {
    client    cloudwatchlogs.CloudWatchLogsAPI
    namespace string
}

func (p *CloudWatchPublisher) PublishMetrics(ctx context.Context, metrics *PerformanceMetrics) error {
    data := []*cloudwatch.MetricDatum{
        {
            MetricName: aws.String("SQLGraphQueryLatency"),
            Value:      aws.Float64(metrics.AverageLatency),
            Unit:       aws.String("Milliseconds"),
            Dimensions: []*cloudwatch.Dimension{
                {Name: aws.String("Database"), Value: aws.String(metrics.Database)},
                {Name: aws.String("Table"), Value: aws.String(metrics.Table)},
            },
        },
        {
            MetricName: aws.String("SQLGraphQueriesPerSecond"),
            Value:      aws.Float64(metrics.QueriesPerSecond),
            Unit:       aws.String("Count/Second"),
        },
    }
    
    _, err := p.client.PutMetricDataWithContext(ctx, &cloudwatch.PutMetricDataInput{
        Namespace:  aws.String(p.namespace),
        MetricData: data,
    })
    
    return err
}

2. Google Cloud Monitoring

// Google Cloud Monitoring integration  
type GCPMonitoringPublisher struct {
    client    monitoring.MetricClient
    projectID string
}

func (p *GCPMonitoringPublisher) PublishMetrics(ctx context.Context, metrics *PerformanceMetrics) error {
    series := []*monitoringpb.TimeSeries{
        {
            Metric: &metricpb.Metric{
                Type: "custom.googleapis.com/sql_graph/query_latency",
                Labels: map[string]string{
                    "database": metrics.Database,
                    "table":    metrics.Table,
                },
            },
            Points: []*monitoringpb.Point{
                {
                    Value: &monitoringpb.TypedValue{
                        Value: &monitoringpb.TypedValue_DoubleValue{
                            DoubleValue: metrics.AverageLatency,
                        },
                    },
                    Interval: &monitoringpb.TimeInterval{
                        EndTime: timestamppb.Now(),
                    },
                },
            },
        },
    }
    
    return p.client.CreateTimeSeries(ctx, &monitoringpb.CreateTimeSeriesRequest{
        Name:       fmt.Sprintf("projects/%s", p.projectID),
        TimeSeries: series,
    })
}

Usage Examples

1. Grafana Dashboard Integration

# Grafana dashboard configuration
apiVersion: v1
kind: ConfigMap
metadata:
  name: sql-graph-dashboard
data:
  dashboard.json: |
    {
      "dashboard": {
        "title": "SQL Graph Performance Monitor",
        "panels": [
          {
            "title": "Database Performance Graph",
            "type": "sql-graph-panel",
            "datasource": "sql-graph-datasource",
            "targets": [
              {
                "database": "production",
                "timeRange": "$__timeRange",
                "refreshInterval": "30s"
              }
            ],
            "options": {
              "visualization": {
                "layout": "force-directed",
                "colorScheme": "performance"
              },
              "performance": {
                "showMetrics": true,
                "alertThresholds": {
                  "highLatency": 1000,
                  "errorRate": 5
                }
              }
            }
          },
          {
            "title": "Query Performance Metrics",
            "type": "graph",
            "datasource": "prometheus",
            "targets": [
              {
                "expr": "rate(sql_graph_query_duration_seconds[5m])",
                "legend": "Query Latency"
              },
              {
                "expr": "sql_graph_bottlenecks_active",
                "legend": "Active Bottlenecks"
              }
            ]
          }
        ]
      }
    }

2. Kubernetes Monitoring Setup

# Complete monitoring stack deployment
apiVersion: monitoring.sqlgraph.io/v1
kind: SQLGraphMonitor
metadata:
  name: production-monitoring
spec:
  databases:
  - name: "main-db"
    type: "postgresql"
    connectionSecret: "db-credentials"
  - name: "analytics-db"
    type: "mysql"  
    connectionSecret: "analytics-credentials"
    
  grafanaIntegration:
    enabled: true
    dashboardConfigMap: "sql-graph-dashboard"
    
  prometheusIntegration:
    enabled: true
    serviceMonitor: true
    scrapeInterval: "30s"
    
  alerting:
    enabled: true
    rules:
    - name: "high-query-latency"
      condition: "sql_graph_query_duration_seconds > 1"
      severity: "warning"
    - name: "critical-bottleneck"
      condition: "sql_graph_bottlenecks_active{severity=\"critical\"} > 0"
      severity: "critical"

3. Service Mesh Integration

# Istio integration for automatic sidecar metrics
apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:
  name: sql-graph-metrics
spec:
  configPatches:
  - applyTo: HTTP_FILTER
    match:
      listener:
        filterChain:
          filter:
            name: "envoy.filters.network.http_connection_manager"
    patch:
      operation: INSERT_BEFORE
      value:
        name: envoy.filters.http.wasm
        typed_config:
          "@type": type.googleapis.com/envoy.extensions.filters.http.wasm.v3.Wasm
          config:
            configuration:
              "@type": type.googleapis.com/google.protobuf.StringValue
              value: |
                {
                  "sql_graph_config": {
                    "metrics_endpoint": "/metrics",
                    "database_connections": ["main-db", "analytics-db"]
                  }
                }

Benefits

  1. 🏢 Enterprise Integration: Seamless integration with existing monitoring infrastructure
  2. 📊 Unified Dashboards: Single pane of glass for all monitoring data
  3. 🚨 Integrated Alerting: Performance alerts through existing channels
  4. ☁️ Cloud Native: Native support for modern cloud platforms
  5. 📈 Standardized Metrics: Prometheus-compatible metrics for ecosystem compatibility
  6. 🔧 Kubernetes Native: First-class Kubernetes operator support
  7. 🌐 Service Mesh Ready: Integration with modern service mesh architectures
  8. 📱 Mobile Ready: Grafana mobile app compatibility

Implementation Strategy

Phase 1: Core Grafana Plugin (Week 1-2)

  • Develop basic Grafana panel plugin
  • Create custom data source for API integration
  • Implement interactive graph visualization
  • Add basic performance metrics overlay

Phase 2: Prometheus Integration (Week 3)

  • Implement Prometheus metrics exporter
  • Add comprehensive metrics collection
  • Create standard Grafana dashboards
  • Add alerting rules templates

Phase 3: Kubernetes Operator (Week 4)

  • Develop Kubernetes operator
  • Create Custom Resource Definitions
  • Implement automated deployment and configuration
  • Add ServiceMonitor integration

Phase 4: Cloud Provider Integrations (Week 5)

  • Implement AWS CloudWatch integration
  • Add Google Cloud Monitoring support
  • Create Azure Monitor integration
  • Add service mesh integrations

Phase 5: Advanced Features (Week 6)

  • Add advanced alerting capabilities
  • Implement automated scaling based on performance metrics
  • Create performance baseline recommendations
  • Add ML-based anomaly detection integration

Success Metrics

  • Reduced monitoring tool switching by 80%
  • Faster incident response through integrated alerting
  • Increased adoption in cloud-native environments
  • Better performance visibility across the organization
  • Standardized metrics adoption across teams

Security Considerations

  • Secure API Authentication: JWT/OAuth integration with existing identity providers
  • Network Policies: Kubernetes network policies for secure communication
  • Secret Management: Integration with Kubernetes secrets and cloud secret managers
  • RBAC Integration: Role-based access control aligned with existing Grafana/K8s permissions
  • Audit Logging: Complete audit trail of all monitoring activities

Related Issues

  • Remote API/gRPC Control Interface (provides API foundation)
  • Performance Graph Snapshot System (enhanced with monitoring integration)
  • CLI Commands Unification (operator uses unified CLI)

Priority: High
Complexity: High
Estimated Effort: 5-6 weeks
Dependencies: Remote API/gRPC Control Interface

Implementation Checklist

  • Design Grafana plugin architecture and API
  • Develop interactive graph panel plugin
  • Create custom SQL Graph data source
  • Implement Prometheus metrics exporter
  • Create standard Grafana dashboard templates
  • Develop Kubernetes operator with CRDs
  • Add cloud provider monitoring integrations
  • Implement service mesh integration support
  • Create comprehensive documentation and examples
  • Add automated testing for all integrations
  • Publish Grafana plugin to official registry
  • Create Helm charts for easy deployment

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancementImprovement to existing functionalityequity-eligibleContributions eligible for equity participationhigh-impactHigh impact features with commercial potential

    Projects

    No projects

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions