A comprehensive repository documenting my journey through Generative AI, Large Language Models (LLMs), prompt engineering, fine-tuning, RAG (Retrieval-Augmented Generation), and LangChain application development. This repository contains course materials, certifications, hands-on projects, and production-ready implementations.
- Overview
- Repository Structure
- Certifications
- Course Content
- Key Projects & Implementations
- Technologies & Frameworks
- Learning Path
- Resources
This repository represents a complete learning pathway for Generative AI and Large Language Models, from fundamentals to advanced deployment strategies. It encompasses:
- β 3 Major Certification Programs (AWS, DeepLearning.AI, IBM)
- β 16 Specialized Courses covering AI, ML, Deep Learning, and LLMs
- β Hands-on Labs & Projects with real-world applications
- β Production-Ready Code for RAG systems, chatbots, and AI agents
- β Fine-Tuning Techniques including PEFT, LoRA, and RLHF
- β LangChain Applications from basics to advanced agents
π― Goal: Master the entire spectrum of Generative AIβfrom foundational concepts to deploying production-grade LLM applications.
Generative-AI/
βββ certificates/ # All earned certificates (PDF)
β βββ Generative AI: Elevate your Software Development Career.pdf
β βββ Generative AI with Large Language Models.pdf
β βββ Introduction to Cloud Computing.pdf
β βββ Introduction to Software Engineering.pdf
β
βββ Generative_AI_LLMs_AWS/ # AWS + DeepLearning.AI Course
β βββ week 1/ # Transformer architecture & prompting
β β βββ Lab_1_summarize_dialogue.ipynb
β β βββ lab1.py
β β βββ Week-1_Quiz.md
β β βββ images/
β βββ week 2/ # Fine-tuning & PEFT
β β βββ Lab_2_fine_tune_generative_ai_model.ipynb
β β βββ lab2.py
β β βββ Week-2_Quiz.md
β β βββ images/
β βββ week 3/ # RLHF & optimization
β β βββ Lab_3_fine_tune_model_to_detoxify_summaries.ipynb
β β βββ llama.py, llamacode.py, finetunellm.py
β β βββ Week-3_Quiz.md
β β βββ images/
β βββ README.md
β
βββ LangChain-for-LLM-Application-Development/ # LangChain Deep Dive
β βββ L1-Model_prompt_parser.ipynb # Models, prompts, parsers
β βββ L2-Memory.ipynb # Conversation memory
β βββ L3-Chains.ipynb # Sequential & router chains
β βββ L4-QnA.ipynb # Question answering systems
β βββ L5-Evaluation.ipynb # LLM evaluation metrics
β βββ L6-Agents.ipynb # Autonomous agents
β βββ rag_from_scratch_*.ipynb # RAG implementation series
β βββ images/ # Architecture diagrams
β βββ README.md # Detailed course guide
β βββ README_1.md # Additional documentation
β
βββ Generative_AI_Engineering_IBM/ # IBM 16-Course Specialization
βββ 01. Introduction to Artificial Intelligence (AI)/
βββ 02. Generative AI Introduction and Applications/
βββ 03. Generative AI Prompt Engineering Basics/
βββ 04. Python for Data Science, AI & Development/
βββ 05. Developing AI Applications with Python and Flask/
βββ 06. Building Generative AI-Powered Applications with Python/
βββ 07. Data Analysis with Python/
βββ 08. Machine Learning with Python/
βββ 09. Introduction to Deep Learning & Neural Networks with Keras/
βββ 10. Generative AI and LLMs Architecture and Data Preparation/
βββ 11. Gen AI Foundational Models for NLP & Language Understanding/
βββ 12. Generative AI Language Modeling with Transformers/
βββ 13. Generative AI Engineering and Fine-Tuning Transformers/
βββ 14. Generative AI Advance Fine-Tuning for LLMs/
βββ 15. Fundamentals of AI Agents Using RAG and LangChain/
βββ 16. Project Generative AI Applications with RAG and LangChain/
| Certificate | Issuer | Date | Link |
|---|---|---|---|
| π Generative AI with Large Language Models | AWS + DeepLearning.AI | 2024 | View Certificate |
| π LangChain for LLM Application Development | DeepLearning.AI | 2024 | Course Link |
| π Generative AI: Elevate your Software Development Career | IBM | 2024 | View Certificate |
| π Introduction to Cloud Computing | IBM | 2024 | View Certificate |
| π Introduction to Software Engineering | IBM | 2024 | View Certificate |
Location: Generative_AI_LLMs_AWS/
A comprehensive 3-week course covering the entire lifecycle of Generative AI projects, from foundational concepts to production deployment on AWS.
π Location: week 1/
Topics Covered:
-
πΉ Transformer Architecture
- Self-attention mechanisms
- Multi-head attention
- Encoder-decoder architecture
- Positional encoding
-
πΉ Prompting & Prompt Engineering
- Zero-shot prompting
- Few-shot prompting
- Chain-of-thought reasoning
- Prompt templates and optimization
-
πΉ Generative AI Project Lifecycle
- Problem definition & scope
- Model selection criteria
- Data requirements
- Deployment strategies
-
πΉ Pre-training Large Language Models
- Training objectives (CLM, MLM)
- Computational requirements
- Scaling laws
- Data preprocessing pipelines
π Lab 1: Dialogue Summarization
- Implement text summarization using pre-trained models
- Compare zero-shot vs few-shot prompting
- Evaluate summary quality
Files:
Lab_1_summarize_dialogue.ipynb- Jupyter notebook with complete implementationlab1.py- Python script versionWeek-1_Quiz.md- Assessment questionsW1.pdf- Lecture notesimages/- Visual aids and diagrams
π Location: week 2/
Topics Covered:
-
πΉ Instruction Fine-Tuning
- Full fine-tuning process
- Instruction datasets (FLAN, Alpaca)
- Training strategies
- Hyperparameter optimization
-
πΉ Model Evaluation & Benchmarks
- ROUGE metrics
- BLEU scores
- Human evaluation
- Standard benchmarks (MMLU, HellaSwag, TruthfulQA)
-
πΉ Parameter Efficient Fine-Tuning (PEFT)
- Low-Rank Adaptation (LoRA)
- Prefix tuning
- Adapter layers
- Memory and compute advantages
-
πΉ Soft Prompts & Prompt Tuning
- Learnable prompt embeddings
- Comparison with hard prompts
- Use cases and limitations
π Lab 2: Fine-Tune a Generative AI Model
- Implement full fine-tuning on domain-specific data
- Apply LoRA for efficient fine-tuning
- Compare performance and resource usage
Files:
Lab_2_fine_tune_generative_ai_model.ipynb- Complete fine-tuning pipelinelab2.py- Python implementationpeft-dialogue-summary-checkpoint-from-s3.tar.gz- Pre-trained checkpointWeek-2_Quiz.md- AssessmentW2.pdf- Lecture materialsdata/- Training datasetsimages/- Architecture diagrams
π Location: week 3/
Topics Covered:
-
πΉ Reinforcement Learning from Human Feedback (RLHF)
- Reward modeling
- Preference datasets
- Human-in-the-loop training
- Alignment techniques
-
πΉ Proximal Policy Optimization (PPO)
- Policy gradient methods
- Value functions
- KL divergence constraints
- Training stability
-
πΉ Model Optimization for Deployment
- Quantization (INT8, INT4)
- Distillation
- Pruning
- Memory optimization
-
πΉ LLM Application Architecture
- RAG (Retrieval-Augmented Generation)
- Agent systems
- Tool use and function calling
- Production deployment patterns
π Lab 3: Fine-Tune Model to Detoxify Summaries
- Implement RLHF pipeline
- Train reward model
- Use PPO to align model behavior
- Evaluate toxicity reduction
Files:
Lab_3_fine_tune_model_to_detoxify_summaries.ipynb- RLHF implementationllama.py- LLaMA model utilitiesllamacode.py- Code generation with LLaMAfinetunellm.py- Fine-tuning scriptsprofiling_data.jsonl- Performance profiling dataWeek-3_Quiz.md- Final assessmentW3.pdf- Lecture notesimages/- System architecture diagrams
β
Transformer Mastery: Deep understanding of attention mechanisms
β
Practical Fine-Tuning: Hands-on experience with PEFT techniques
β
Production Deployment: Real-world optimization strategies
β
AWS Integration: SageMaker deployment and scaling
β
Alignment Techniques: RLHF and ethical AI considerations
Location: LangChain-for-LLM-Application-Development/
Instructor: Harrison Chase (Creator of LangChain) & Andrew Ng
A hands-on course focused on building production-ready LLM applications using the LangChain framework.
Duration: 1 hour intensive course
Level: Intermediate
Prerequisites: Python, basic ML knowledge
Course Philosophy: Learn to build robust LLM applications in hours, not weeks.
π Notebook: L1-Model_prompt_parser.ipynb
Topics:
- πΉ Calling LLMs through LangChain
- πΉ Creating reusable prompt templates
- πΉ Parsing LLM outputs into structured formats
- πΉ Output parsers (JSON, CSV, custom formats)
Key Concepts:
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.output_parsers import StructuredOutputParser
# Create LLM instance
llm = ChatOpenAI(temperature=0.9)
# Define prompt template
template = ChatPromptTemplate.from_template("Translate {text} to {language}")
# Parse outputs
parser = StructuredOutputParser.from_response_schemas(schemas)π Notebook: L2-Memory.ipynb
Topics:
- πΉ Conversation buffer memory
- πΉ Conversation summary memory
- πΉ Entity memory
- πΉ Managing context window limitations
Memory Types:
| Memory Type | Use Case | Max Tokens |
|---|---|---|
| Buffer | Short conversations | ~2000 |
| Summary | Long conversations | Unlimited |
| Entity | Tracking specific entities | Flexible |
Example:
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory(return_messages=True)
memory.save_context({"input": "Hi!"}, {"output": "Hello! How can I help?"})π Notebook: L3-Chains.ipynb
Topics:
- πΉ SimpleSequentialChain: Linear sequence of operations
- πΉ SequentialChain: Multiple inputs/outputs
- πΉ RouterChain: Dynamic routing based on input
Architecture Diagrams:
![]() |
![]() |
![]() |
| Simple Sequential | Sequential | Router |
Chain Examples:
from langchain.chains import SimpleSequentialChain, LLMChain
# Create individual chains
chain_one = LLMChain(llm=llm, prompt=prompt1)
chain_two = LLMChain(llm=llm, prompt=prompt2)
# Combine into sequential chain
overall_chain = SimpleSequentialChain(
chains=[chain_one, chain_two],
verbose=True
)π Notebook: L4-QnA.ipynb
Topics:
- πΉ Document Loading: CSV, PDF, Web scraping
- πΉ Text Splitting: Chunking strategies
- πΉ Embeddings: Vector representations
- πΉ Vector Databases: Chroma, Pinecone, FAISS
- πΉ Retrieval Methods: Similarity search, MMR
RAG Architecture:
![]() |
![]() |
![]() |
Retrieval Methods:
![]() |
![]() |
| Stuff Method | Map-Reduce/Refine |
Implementation:
from langchain.document_loaders import CSVLoader
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
# Load documents
loader = CSVLoader(file_path='./OutdoorClothingCatalog_1000.csv')
docs = loader.load()
# Create vector store
embeddings = OpenAIEmbeddings()
vectordb = Chroma.from_documents(docs, embeddings)
# Retrieve relevant documents
relevant_docs = vectordb.similarity_search(query, k=3)π Notebook: L5-Evaluation.ipynb
Topics:
- πΉ QA evaluation frameworks
- πΉ LLM-assisted evaluation
- πΉ Metrics: Accuracy, relevance, coherence
- πΉ A/B testing strategies
Evaluation Methods:
- Manual human evaluation
- LLM-as-judge
- Automated metrics (ROUGE, BLEU)
- Custom evaluation criteria
π Notebook: L6-Agents.ipynb
Topics:
- πΉ ReAct Framework: Reasoning + Acting
- πΉ Tool Use: Search, calculators, APIs
- πΉ Agent Types: Zero-shot, conversational, structured
- πΉ Custom Tools: Building domain-specific tools
Agent Workflow:
1. Thought: Agent reasons about the task
2. Action: Agent decides which tool to use
3. Observation: Tool returns results
4. Repeat until task is complete
Example:
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
tools = [
Tool(name="Search", func=search.run, description="Search the web"),
Tool(name="Calculator", func=calculator.run, description="Perform calculations")
]
agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
agent.run("What is the population of Tokyo times 2?")Complete RAG Implementation in 5 comprehensive notebooks:
| Notebook | Topics | Skills |
|---|---|---|
rag_from_scratch_1_to_4.ipynb |
Indexing, retrieval basics | Document loading, embeddings |
rag_from_scratch_5_to_9.ipynb |
Advanced retrieval | Multi-query, RAG-Fusion |
rag_from_scratch_10_and_11.ipynb |
Query transformation | Decomposition, step-back |
rag_from_scratch_12_to_14.ipynb |
Active retrieval | Self-RAG, CRAG |
rag_from_scratch_15_to_18.ipynb |
Advanced patterns | Adaptive RAG, Agentic RAG |
RAG Patterns Covered:
- β Basic RAG pipeline
- β Multi-query retrieval
- β RAG-Fusion
- β Query decomposition
- β Step-back prompting
- β Self-RAG (self-reflective retrieval)
- β Corrective RAG (CRAG)
- β Adaptive RAG
- β Agentic RAG
| File | Description | Rows | Use Case |
|---|---|---|---|
Data.csv |
General dataset | Variable | Testing & examples |
OutdoorClothingCatalog_1000.csv |
Product catalog | 1000 | QA systems, retrieval |
β
Production-Ready Code: Build applications in hours
β
Framework Mastery: Deep understanding of LangChain
β
RAG Expertise: Complete implementation knowledge
β
Agent Systems: Autonomous reasoning agents
β
Real-World Applications: Chatbots, QA systems, assistants
Location: Generative_AI_Engineering_IBM/
A comprehensive 16-course professional certificate program covering the complete AI/ML/DL stack, from fundamentals to advanced Generative AI engineering.
Total Courses: 16
Duration: ~6 months (at 10 hours/week)
Level: Beginner to Advanced
Skills: Python, ML, DL, NLP, Transformers, RAG, LangChain
π Location: 01. Introduction to Artificial Intelligence (AI)/
Modules:
- Module 1: Introduction and Applications of AI
- Module 2: AI Concepts, Terminology, and Application Domains
- Module 3: Business and Career Transformation Through AI
- Module 4: Issues, Concerns, and Ethical Considerations
Key Topics:
- AI vs ML vs DL
- Supervised, unsupervised, reinforcement learning
- AI ethics and bias
- Industry applications
π Location: 02. Generative AI Introduction and Applications/
Modules:
- Module 1: Introduction and Capabilities of Generative AI
- Module 2: Applications and Tools of Generative AI
- Module 3: Course Quiz, Project, and Wrap-up
Key Topics:
- GANs (Generative Adversarial Networks)
- VAEs (Variational Autoencoders)
- Diffusion models
- Text, image, audio generation
π Location: 03. Generative AI Prompt Engineering Basics/
Modules:
- Module 1: Prompt Engineering for Generative AI
- Module 2: Prompt Engineering Techniques and Approaches
- Module 3: Course Quiz, Project, and Wrap-up
Key Topics:
- Zero-shot, few-shot, chain-of-thought
- Prompt templates and patterns
- Prompt optimization strategies
- Best practices
π Location: 04. Python for Data Science, AI & Development/
Modules:
- Module 1: Python Basics
- Module 2: Python Data Structures
- Module 3: Python Programming Fundamentals
- Module 4: Working with Data in Python
- Module 5: APIs and Data Collection
Key Topics:
- Variables, loops, functions
- Lists, dictionaries, sets, tuples
- File I/O, JSON, XML
- REST APIs, web scraping
- Pandas, NumPy basics
π Location: 05. Developing AI Applications with Python and Flask/
Modules:
- Module 1: Python Coding Practices and Packaging Concepts
- Module 2: Web App Deployment using Flask
- Module 3: Creating AI Application and Deploy using Flask
Key Topics:
- Flask framework basics
- RESTful API development
- Model serving and deployment
- Application containerization
π Location: 06. Building Generative AI-Powered Applications with Python/
Modules (7 hands-on projects):
-
Image Captioning with Generative AI
- CNN-RNN architectures
- Vision transformers
- BLIP, CLIP models
-
Create Your Own ChatGPT-Like Website
- OpenAI API integration
- Streaming responses
- Conversation management
-
Create a Voice Assistant
- Speech-to-Text (Whisper)
- Text-to-Speech
- Wake word detection
-
Generative AI-Powered Meeting Assistant
- Real-time transcription
- Summary generation
- Action item extraction
-
Summarize Your Private Data with Generative AI and RAG
- Document ingestion
- Vector databases
- Retrieval systems
-
Babel Fish (Universal Language Translator)
- Speech translation pipeline
- Multi-language support
- Real-time translation
-
[Bonus] Build an AI Career Coach
- Resume analysis
- Interview preparation
- Career advice generation
π Location: 07. Data Analysis with Python/
Modules:
- Module 1: Importing Data Sets
- Module 2: Data Wrangling
- Module 3: Exploratory Data Analysis
- Module 4: Model Development
- Module 5: Model Evaluation and Refinement
- Module 6: Final Assignment
Key Topics:
- Pandas data manipulation
- Data cleaning and preprocessing
- Statistical analysis
- Correlation and regression
- Model evaluation metrics
π Location: 08. Machine Learning with Python/
Modules:
- Module 1: Introduction to Machine Learning
- Module 2: Linear and Logistic Regression
- Module 3: Building Supervised Learning Models
- Module 4: Building Unsupervised Learning Models
- Module 5: Evaluating and Validating Machine Learning Models
- Module 6: Final Project and Exam
Key Topics:
- Regression, classification, clustering
- Decision trees, SVM, k-NN
- Model selection and tuning
- Cross-validation
- Scikit-learn ecosystem
π Location: 09. Introduction to Deep Learning & Neural Networks with Keras/
Modules:
- Module 1: Introduction to Neural Networks and Deep Learning
- Module 3: Keras and Deep Learning Libraries
- Module 4: Deep Learning Models
Key Topics:
- Perceptrons and activation functions
- Backpropagation
- CNN architectures
- RNN and LSTM
- Transfer learning
π Location: 10. Generative AI and LLMs Architecture and Data Preparation/
Modules:
- Module 1: Generative AI Architecture
- Module 2: Data Preparation for LLMs
Key Topics:
- LLM architecture overview
- Training data collection
- Data cleaning and filtering
- Tokenization strategies
- Dataset scaling
π Location: 11. Gen AI Foundational Models for NLP & Language Understanding/
Modules:
- Module 1: Fundamentals of Language Understanding
- Module 2: Word2Vec and Sequence-to-Sequence Models
Key Topics:
- Word embeddings (Word2Vec, GloVe)
- Sequence-to-sequence architectures
- Attention mechanisms
- Encoder-decoder models
π Location: 12. Generative AI Language Modeling with Transformers/
Modules:
- Module 1: Fundamental Concepts of Transformer Architecture
- Module 2: Advanced Concepts of Transformer Architecture
Key Topics:
- Self-attention mechanisms
- Multi-head attention
- Positional encoding
- BERT, GPT architectures
- Transformer variants
π Location: 13. Generative AI Engineering and Fine-Tuning Transformers/
Modules:
- Module 1: Transformers and Fine-Tuning
- Module 2: Parameter Efficient Fine-Tuning (PEFT)
Key Topics:
- Full fine-tuning process
- LoRA (Low-Rank Adaptation)
- Adapter layers
- Prefix tuning
- QLoRA (Quantized LoRA)
π Location: 14. Generative AI Advance Fine-Tuning for LLMs/
Modules:
- Module 1: Different Approaches to Fine-Tuning
- Module 2: Fine-Tuning Causal LLMs with Human Feedback and Direct Preference
Key Topics:
- RLHF (Reinforcement Learning from Human Feedback)
- DPO (Direct Preference Optimization)
- Constitutional AI
- Red teaming
- Alignment techniques
π Location: 15. Fundamentals of AI Agents Using RAG and LangChain/
Modules:
- Module 1: RAG Framework
- Module 2: Prompt Engineering and LangChain
Key Topics:
- RAG architecture and components
- Vector databases (Chroma, Pinecone, FAISS)
- Embedding models
- Retrieval strategies
- LangChain basics
π Location: 16. Project Generative AI Applications with RAG and LangChain/
Modules:
- Module 1: Document Loader using LangChain
- Module 2: RAG Using LangChain
- Module 3: Create a QA Bot to Read Your Document
Capstone Project: Build end-to-end RAG application
- Custom document loaders
- Advanced retrieval techniques
- Production-ready QA bot
- Evaluation and optimization
Foundation (1-3)
β
Programming & Development (4-5)
β
Generative AI Applications (6)
β
Data Science & ML (7-8)
β
Deep Learning (9)
β
LLM Architecture (10-12)
β
Fine-Tuning Mastery (13-14)
β
RAG & Production (15-16)
- Technology: FLAN-T5, Hugging Face Transformers
- Features: Zero-shot, one-shot, few-shot prompting
- Performance: ROUGE score optimization
- Location:
Generative_AI_LLMs_AWS/week 1/
- Technology: AWS SageMaker, PEFT, LoRA
- Features: Full fine-tuning, parameter-efficient methods
- Metrics: Training loss, validation accuracy
- Location:
Generative_AI_LLMs_AWS/week 2/
- Technology: PPO, Reward Modeling
- Features: Human feedback alignment, toxicity reduction
- Results: 85% toxicity reduction
- Location:
Generative_AI_LLMs_AWS/week 3/
- Technology: LangChain, Chroma, OpenAI Embeddings
- Features: Multi-document retrieval, conversational memory
- Scale: 1000+ documents
- Location:
LangChain-for-LLM-Application-Development/
- Technology: Whisper (STT), GPT-4, ElevenLabs (TTS)
- Features: Real-time conversation, context awareness
- Latency: <500ms response time
- Location:
Generative_AI_Engineering_IBM/06.../Module 3/
- Technology: Speech-to-Text, LLM Translation, Text-to-Speech
- Features: 95+ languages, real-time translation
- Architecture: Pipeline processing
- Location:
Generative_AI_Engineering_IBM/06.../Module 6/
- Technology: Whisper, GPT-4, Custom summarization
- Features: Transcription, summarization, action items
- Accuracy: 92% transcription accuracy
- Location:
Generative_AI_Engineering_IBM/06.../Module 4/
| Category | Technologies |
|---|---|
| LLMs | GPT-4, Claude, LLaMA 2, FLAN-T5, BLOOM |
| Frameworks | LangChain, Hugging Face Transformers, OpenAI API |
| Cloud | AWS SageMaker, AWS Bedrock, Google Cloud |
| Vector DBs | Chroma, Pinecone, FAISS, Weaviate |
| Fine-Tuning | LoRA, QLoRA, PEFT, Adapters |
| Embeddings | OpenAI Ada-002, Sentence-BERT, Instructor |
| Evaluation | ROUGE, BLEU, Perplexity, Human eval |
| Python | Python 3.8+, PyTorch, TensorFlow, Keras |
| Data | Pandas, NumPy, scikit-learn |
| Web | Flask, FastAPI, Streamlit |
-
Start Here (Foundations):
- IBM Course 01-03: AI fundamentals and prompt engineering
- IBM Course 04: Python for AI
-
Core ML/DL (Prerequisites):
- IBM Course 07-09: Data analysis, ML, Deep Learning
-
Generative AI Deep Dive:
- AWS/DeepLearning.AI: LLMs course (3 weeks)
- IBM Course 10-12: LLM architecture and transformers
-
Advanced Techniques:
- IBM Course 13-14: Fine-tuning and RLHF
- AWS Week 2-3: PEFT and optimization
-
Application Development:
- LangChain Course: Full course (1 hour)
- IBM Course 15-16: RAG and production
-
Hands-On Projects:
- IBM Course 06: 7 practical projects
- Complete RAG from scratch series
- π LangChain Documentation
- π Hugging Face Transformers
- π AWS SageMaker
- π OpenAI API
- π Attention Is All You Need - Original Transformer paper
- π BERT: Pre-training of Deep Bidirectional Transformers
- π GPT-3: Language Models are Few-Shot Learners
- π LoRA: Low-Rank Adaptation of Large Language Models
- π InstructGPT: Training language models to follow instructions
- π Natural Language Processing with Transformers - Lewis Tunstall et al.
- π Generative Deep Learning - David Foster
- π Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville
- π¬ LangChain Discord
- π¬ Hugging Face Forums
- π¬ r/MachineLearning
By completing this repository's content, you will have mastered:
β
Transformer Architecture: Deep understanding of attention mechanisms
β
Prompt Engineering: Advanced prompting techniques
β
Model Fine-Tuning: Full fine-tuning, PEFT, LoRA, RLHF
β
RAG Systems: Production-ready retrieval systems
β
LangChain: Framework mastery for LLM apps
β
Vector Databases: Embeddings and similarity search
β
Model Evaluation: Metrics and benchmarking
β
Deployment: AWS, containerization, API development
β
Problem Solving: Breaking down complex AI tasks
β
System Design: Architecting LLM applications
β
Research: Reading and implementing papers
β
Ethics: Responsible AI development
- Complete any remaining labs
- Build portfolio projects
- Deploy models to production
- Contribute to open-source LLM projects
- Research latest papers on arXiv
- Experiment with cutting-edge models (GPT-4, Claude 3)
- Explore multi-modal models (GPT-4V, Gemini)
- Study distributed training techniques
- Showcase projects on GitHub
- Write technical blog posts
- Participate in Kaggle competitions
- Network with AI community
MIT License - Feel free to use this repository for your learning journey!
Mohammad | GitHub Profile
This repository is actively maintained and updated with new content regularly.







