Skip to content

A Model Context Protocol (MCP) server that provides semantic search over AWS Cloudscape Design System documentation.

License

Notifications You must be signed in to change notification settings

praveenc/cloudscape-docs-mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cloudscape Docs MCP Server

A Model Context Protocol (MCP) server that provides semantic search over AWS Cloudscape Design System documentation. Built for AI agents and coding assistants to efficiently query component documentation.

Features

  • Semantic Search - Find relevant documentation using natural language queries powered by Jina Code Embeddings 0.5B model
  • Token Efficient - Returns concise file lists first, full content on demand
  • Hardware Optimized - Automatic detection of Apple Silicon (MPS), CUDA, or CPU
  • Local Vector Store - Uses LanceDB for fast, file-based vector search

Transport

This server uses the MCP stdio transport protocol.
Streamable HTTP transport coming soon.

Tools

Tool Description
cloudscape_search_docs Search the documentation index. Returns top 5 relevant files with titles and paths.
cloudscape_read_doc Read the full content of a specific documentation file.

Cloudscape Docs MCP Tools in Action


Requirements

  • Python 3.13+
  • ~3GB disk space for the embedding model
  • 8GB+ RAM recommended

Installation

# Clone the repository
git clone https://github.com/praveenc/cloudscape-docs-mcp.git
cd cloudscape-docs-mcp

# Create virtual environment and install dependencies
uv sync

# Or with pip
pip install -e .

Setup

1. Add Documentation

Place your Cloudscape documentation files in the docs/ directory. Supported formats:

  • .md (Markdown)
  • .txt (Plain text)
  • .tsx / .ts (TypeScript/React)

2. Build the Index

Run the ingestion script to create the vector database:

uv run ingest.py

This will:

  • Scan all files in docs/
  • Chunk content into ~2000 character segments
  • Generate embeddings using Jina Code Embeddings 0.5B embedding model
  • Store vectors in data/lancedb/

Note: Running uv run ingest.py multiple times is safe but performs a full re-index each time. The script uses mode="overwrite" which drops and recreates the database table. There is no incremental update or change detection—all documents are re-scanned and re-embedded on every run. This is idempotent (same docs produce the same result) but computationally expensive for large documentation sets.

3. Run the Server

uv run server.py

MCP Client Configuration

Claude Desktop

Add to your mcp.json:

{
  "mcpServers": {
    "cloudscape-docs": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/cloudscape-docs-mcp", "python", "server.py"]
    }
  }
}

Cursor / VS Code / Windsurf / Kiro

Add to your MCP settings:

{
  "cloudscape-docs": {
    "command": "uv",
    "args": ["run", "--directory", "/path/to/cloudscape-docs-mcp", "python", "server.py"]
  }
}

Zed

Add to your Zed settings (settings.json):

{
  "context_servers": {
    "cloudscape-docs": {
      "command": {
        "path": "uv",
        "args": ["run", "--directory", "/path/to/cloudscape-docs-mcp", "python", "server.py"]
      }
    }
  }
}

Usage Example

Once connected, an AI assistant can:

  1. Search for components:

    User: "How do I use the Table component with sorting?"
    Agent: [calls cloudscape_search_docs("table sorting")]
    
  2. Read specific documentation:

    Agent: [calls cloudscape_read_doc("docs/components/table/sorting.md")]
    

Project Structure

cloudscape-docs-mcp/
├── server.py          # MCP server with search/read tools
├── ingest.py          # Documentation indexing script
├── pyproject.toml     # Project dependencies
├── docs/              # Documentation files (partially curated)
│   ├── components/    # Component documentation
│   ├── foundations/   # Design foundations
│   └── genai_patterns/# GenAI UI patterns
└── data/              # Generated vector database (gitignored)
    └── lancedb/

Configuration

Key settings in server.py and ingest.py:

Variable Default Description
MODEL_NAME jinaai/jina-code-embeddings-0.5b Embedding model
VECTOR_DIM 1536 Vector dimensions
MAX_UNIQUE_RESULTS 5 Max search results returned
DOCS_DIR ./docs Documentation source directory
DB_URI ./data/lancedb Vector database location

Development

# Install dev dependencies
uv sync --group dev

# Run with MCP inspector
npx @modelcontextprotocol/inspector uv --directory /path/to/cloudscape_docs run server.py
# Alternatively, use mcp cli to launch the server
mcp dev server.py

License

MIT License - See LICENSE for details.

Acknowledgments

About

A Model Context Protocol (MCP) server that provides semantic search over AWS Cloudscape Design System documentation.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages