Skip to content

Inference value is different from train value #396

@unolife

Description

@unolife

Describe the bug
when I train model, I got this kind of prediction:

      0_probability  1_probability  prediction
0          0.849047       0.150953           0
1          0.847665       0.152334           0
2          0.848109       0.151891           0
3          0.849097       0.150903           0
4          0.843085       0.156915           0
...             ...            ...         ...
4399       0.819843       0.180157           0
4400       0.656908       0.343092           0
4401       0.831712       0.168288           0
4402       0.778614       0.221386           0
4403       0.848845       0.151155           0

but when I do inference, I got this kind of result:

tensor([[ 1.2595, -0.8684],
        [ 2.6755, -1.3752],
        [ 2.2348, -1.2487],
        ...,
        [ 3.6170, -1.6117],
        [ 1.2994, -0.9014],
        [ 1.6549, -1.0630]], grad_fn=<AddmmBackward0>)

why suddenly - value(<0) poped up??

here is my train code

continuous_cols = train_x.select_dtypes(include=['float64', 'int64']).columns.tolist()
categorical_cols = train_x.select_dtypes(include=['object', 'category']).columns.tolist()
target_column = params.get('target_column')
data_config = DataConfig(
            target=[target_column],
            continuous_cols=continuous_cols,
            categorical_cols=categorical_cols,
        )
optimizer = params.get('optimizer')
if optimizer is None:
     optimizer = 'Adam'
optimizer_config = OptimizerConfig(
            optimizer=optimizer,
            lr_scheduler=params.get('lr_scheduler'),
        )
trainer_config = TrainerConfig(
            auto_lr_find=params.get('auto_lr_find'),
            batch_size=params.get('batch_size'),
            max_epochs=params.get('max_epochs'),
            seed=params.get('random_state'),
            early_stopping_patience=params.get('early_stopping_patience'),
        )
tabular_model = TabularModel(
            data_config=data_config,
            model_config=model_config,
            optimizer_config=optimizer_config,
            trainer_config=trainer_config,
        )
train = pd.concat([train_x, pd.DataFrame(train_y, columns=[target_column])], axis=1)
valid = pd.concat([valid_x, pd.DataFrame(valid_y, columns=[target_column])], axis=1)
tabular_model.fit(train=train, validation=valid)
res = tabular_model.predict(valid)
print(res)
 tabular_model.save_model_for_inference(path=f"./model.pt")

and here is my inference code

prediction_model = torch.load('./model.pt')
prediction_model.eval()
continuous_cols = before_fe_x.select_dtypes(include=['float64', 'int64']).columns.tolist()
categorical_cols = before_fe_x.select_dtypes(include=['object', 'category']).columns.tolist()
x = {"continuous": torch.tensor(before_fe_x[continuous_cols].values, dtype=torch.float32), "categorical": torch.tensor(before_fe_x[categorical_cols].values, dtype=torch.float32)}
res = prediction_model.predict(x)
print(res)

To Reproduce
Steps to reproduce the behavior:

  1. Go to '...'
  2. Click on '....'
  3. Scroll down to '....'
  4. See error

Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

Desktop (please complete the following information):

  • OS: [e.g. iOS]
  • Browser [e.g. chrome, safari]
  • Version [e.g. 22]

Smartphone (please complete the following information):

  • Device: [e.g. iPhone6]
  • OS: [e.g. iOS8.1]
  • Browser [e.g. stock browser, safari]
  • Version [e.g. 22]

Additional context
Add any other context about the problem here.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions