Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 16 additions & 15 deletions dcgan/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -198,9 +198,6 @@ def forward(self, input):
input, label = input.cuda(), label.cuda()
noise, fixed_noise = noise.cuda(), fixed_noise.cuda()

input = Variable(input)
label = Variable(label)
noise = Variable(noise)
fixed_noise = Variable(fixed_noise)

# setup optimizer
Expand All @@ -216,21 +213,25 @@ def forward(self, input):
netD.zero_grad()
real_cpu, _ = data
batch_size = real_cpu.size(0)
input.data.resize_(real_cpu.size()).copy_(real_cpu)
label.data.resize_(batch_size).fill_(real_label)

output = netD(input)
errD_real = criterion(output, label)
if opt.cuda:
real_cpu = real_cpu.cuda()
input.resize_as_(real_cpu).copy_(real_cpu)
label.resize_(batch_size).fill_(real_label)
inputv = Variable(input)
labelv = Variable(label)

output = netD(inputv)
errD_real = criterion(output, labelv)
errD_real.backward()
D_x = output.data.mean()

# train with fake
noise.data.resize_(batch_size, nz, 1, 1)
noise.data.normal_(0, 1)
fake = netG(noise)
label.data.fill_(fake_label)
noise.resize_(batch_size, nz, 1, 1).normal_(0, 1)
noisev = Variable(noise)
fake = netG(noisev)
labelv = Variable(label.fill_(fake_label))
output = netD(fake.detach())
errD_fake = criterion(output, label)
errD_fake = criterion(output, labelv)
errD_fake.backward()
D_G_z1 = output.data.mean()
errD = errD_real + errD_fake
Expand All @@ -240,9 +241,9 @@ def forward(self, input):
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
label.data.fill_(real_label) # fake labels are real for generator cost
labelv = Variable(label.fill_(real_label)) # fake labels are real for generator cost
output = netD(fake)
errG = criterion(output, label)
errG = criterion(output, labelv)
errG.backward()
D_G_z2 = output.data.mean()
optimizerG.step()
Expand Down