-
-
Notifications
You must be signed in to change notification settings - Fork 657
Closed
Labels
Description
I'm training a FCN on the Cityscapes dataset. All ignored classes are mapped to 255. This works perfectly fine for the loss function using ignore_index.
Using the Ignite IoU metric however results in this error:
/pytorch/aten/src/THC/THCTensorScatterGather.cu:188: void THCudaTensor_scatterFillKernel(TensorInfo<Real, IndexType>, TensorInfo<long, IndexType>, Real, int, IndexType) [with IndexType = unsigned int, Real = float, Dims = 2]: block: [36,0,0], thread: [0,0,0] Assertion `indexValue >= 0 && indexValue < tensor.sizes[dim]` failed.
triggered here:
y_pred_ohe = to_onehot(indices.reshape(-1), self.num_classes)
File "/usr/local/lib/python3.6/dist-packages/ignite/utils.py", line 48, in to_onehot
onehot = torch.zeros(indices.shape[0], num_classes, *indices.shape[1:], device=indices.device)
RuntimeError: cuda runtime error (59) : device-side assert triggered at /pytorch/aten/src/THC/generic/THCTensorMath.cu:26
It's probably because there are only 19 classes and some values are 255.