Skip to content

Flex attention reports key error, but works with an additional print message #136989

@why-in-Shanghaitech

Description

@why-in-Shanghaitech

🐛 Describe the bug

import torch
from torch.nn.attention.flex_attention import flex_attention, create_block_mask

flex_attention = torch.compile(flex_attention)
attn_mask = torch.ones((4,1,2048,2048), dtype=torch.bool, device='cuda').tril()

def causal(b, h, q_idx, kv_idx):
    h_ = h.new_zeros(h.shape)
    # print(b)  # uncomment this line to make the code work
    return attn_mask[b][h_][q_idx][kv_idx]
block_mask = create_block_mask(causal, B=4, H=None, Q_LEN=2048, KV_LEN=2048)
print(block_mask)


q, k, v = torch.randn(4, 1, 2048, 64, device='cuda'), torch.randn(4, 1, 2048, 64, device='cuda'), torch.randn(4, 1,2048, 64, device='cuda')

print(flex_attention(q, k, v, block_mask=block_mask))

I want to create a block mask from a pre-defined mask tensor. However, if directly return attn_mask[b][h_][q_idx][kv_idx], it would raise:

Traceback (most recent call last):
  File "/home/drisspg/meta/scripts/flex/key.py", line 17, in <module>
    print(flex_attention(q, k, v, block_mask=block_mask))
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/eval_frame.py", line 465, in _fn
    return fn(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/convert_frame.py", line 1294, in __call__
    return self._torchdynamo_orig_callable(
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/convert_frame.py", line 1089, in __call__
    result = self._inner_convert(
             ^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/convert_frame.py", line 526, in __call__
    return _compile(
           ^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/convert_frame.py", line 929, in _compile
    guarded_code = compile_inner(code, one_graph, hooks, transform)
                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/convert_frame.py", line 671, in compile_inner
    return _compile_inner(code, one_graph, hooks, transform)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_utils_internal.py", line 87, in wrapper_function
    return function(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/convert_frame.py", line 704, in _compile_inner
    out_code = transform_code_object(code, transform)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/bytecode_transformation.py", line 1337, in transform_code_object
    transformations(instructions, code_options)
  File "/home/drisspg/meta/pytorch/torch/_dynamo/convert_frame.py", line 219, in _fn
    return fn(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/convert_frame.py", line 639, in transform
    tracer.run()
  File "/home/drisspg/meta/pytorch/torch/_dynamo/symbolic_convert.py", line 2766, in run
    super().run()
  File "/home/drisspg/meta/pytorch/torch/_dynamo/symbolic_convert.py", line 973, in run
    while self.step():
          ^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/symbolic_convert.py", line 885, in step
    self.dispatch_table[inst.opcode](self, inst)
  File "/home/drisspg/meta/pytorch/torch/_dynamo/symbolic_convert.py", line 2957, in RETURN_VALUE
    self._return(inst)
  File "/home/drisspg/meta/pytorch/torch/_dynamo/symbolic_convert.py", line 2942, in _return
    self.output.compile_subgraph(
  File "/home/drisspg/meta/pytorch/torch/_dynamo/output_graph.py", line 1117, in compile_subgraph
    self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root)
  File "/home/drisspg/meta/pytorch/torch/_dynamo/output_graph.py", line 1369, in compile_and_call_fx_graph
    compiled_fn = self.call_user_compiler(gm)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/output_graph.py", line 1416, in call_user_compiler
    return self._call_user_compiler(gm)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/output_graph.py", line 1465, in _call_user_compiler
    raise BackendCompilerFailed(self.compiler_fn, e).with_traceback(
  File "/home/drisspg/meta/pytorch/torch/_dynamo/output_graph.py", line 1446, in _call_user_compiler
    compiled_fn = compiler_fn(gm, self.example_inputs())
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/repro/after_dynamo.py", line 130, in __call__
    compiled_gm = compiler_fn(gm, example_inputs)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/__init__.py", line 2235, in __call__
    return compile_fx(model_, inputs_, config_patches=self.config)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_inductor/compile_fx.py", line 1545, in compile_fx
    return aot_autograd(
           ^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/backends/common.py", line 72, in __call__
    cg = aot_module_simplified(gm, example_inputs, **self.kwargs)
         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_functorch/aot_autograd.py", line 1080, in aot_module_simplified
    compiled_fn = dispatch_and_compile()
                  ^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_functorch/aot_autograd.py", line 1065, in dispatch_and_compile
    compiled_fn, _ = create_aot_dispatcher_function(
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_functorch/aot_autograd.py", line 524, in create_aot_dispatcher_function
    return _create_aot_dispatcher_function(
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_functorch/aot_autograd.py", line 761, in _create_aot_dispatcher_function
    compiled_fn, fw_metadata = compiler_fn(
                               ^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py", line 179, in aot_dispatch_base
    compiled_fw = compiler(fw_module, updated_flat_args)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_inductor/compile_fx.py", line 1371, in fw_compiler_base
    return _fw_compiler_base(model, example_inputs, is_inference)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_inductor/compile_fx.py", line 1442, in _fw_compiler_base
    return inner_compile(
           ^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_inductor/compile_fx.py", line 460, in compile_fx_inner
    return wrap_compiler_debug(_compile_fx_inner, compiler_name="inductor")(
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_dynamo/repro/after_aot.py", line 85, in debug_wrapper
    inner_compiled_fn = compiler_fn(gm, example_inputs)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_inductor/compile_fx.py", line 646, in _compile_fx_inner
    compiled_graph = FxGraphCache.load(
                     ^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_inductor/codecache.py", line 1427, in load
    compiled_graph = compile_fx_fn(
                     ^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_inductor/compile_fx.py", line 555, in codegen_and_compile
    compiled_graph = fx_codegen_and_compile(gm, example_inputs, **fx_kwargs)
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_inductor/compile_fx.py", line 863, in fx_codegen_and_compile
    compiled_fn = graph.compile_to_fn()
                  ^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_inductor/graph.py", line 1948, in compile_to_fn
    return self.compile_to_module().call
           ^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_inductor/graph.py", line 1874, in compile_to_module
    return self._compile_to_module()
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_inductor/graph.py", line 1880, in _compile_to_module
    self.codegen_with_cpp_wrapper() if self.cpp_wrapper else self.codegen()
                                                             ^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_inductor/graph.py", line 1815, in codegen
    self.scheduler = Scheduler(self.operations)
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/drisspg/meta/pytorch/torch/_inductor/scheduler.py", line 1741, in __init__
    self._init(nodes)
  File "/home/drisspg/meta/pytorch/torch/_inductor/scheduler.py", line 1795, in _init
    self.compute_ancestors()
  File "/home/drisspg/meta/pytorch/torch/_inductor/scheduler.py", line 2243, in compute_ancestors
    dep_node_name = self.name_to_buf[dep.name].defining_op.get_name()
                    ~~~~~~~~~~~~~~~~^^^^^^^^^^
torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised:
KeyError: 'b'

Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information


You can suppress this exception and fall back to eager by setting:
    import torch._dynamo
    torch._dynamo.config.suppress_errors = True

However, if I add print(b), the code works quite well! I would like to ask:

  1. Is this the right way to use flex attention with a pre-defined mask?
  2. Why its behaviour is so strange? Is this related to torch.compile?
  3. How to fix this?

Here is the complete script to reproduce this: https://gist.github.com/why-in-Shanghaitech/8b8205f98568c6741a2e38dfcdb9d362/e859567ddcc3b6dfc2aaa027640fdf8f2ee196ce

Versions

PyTorch version: 2.5.0.dev20240829
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.2 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:12:24) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-84-generic-x86_64-with-glibc2.35
Is CUDA available: False
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: Could not collect
Nvidia driver version: Could not collect
cuDNN version: Probably one of the following:
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn.so.8
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_adv_train.so.8
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8
/usr/local/cuda-12.2/targets/x86_64-linux/lib/libcudnn_ops_train.so.8
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      46 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             64
On-line CPU(s) list:                0-63
Vendor ID:                          GenuineIntel
Model name:                         Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
CPU family:                         6
Model:                              85
Thread(s) per core:                 2
Core(s) per socket:                 16
Socket(s):                          2
Stepping:                           7
CPU max MHz:                        3900.0000
CPU min MHz:                        1200.0000
BogoMIPS:                           5800.00
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities
Virtualization:                     VT-x
L1d cache:                          1 MiB (32 instances)
L1i cache:                          1 MiB (32 instances)
L2 cache:                           32 MiB (32 instances)
L3 cache:                           44 MiB (2 instances)
NUMA node(s):                       2
NUMA node0 CPU(s):                  0-15,32-47
NUMA node1 CPU(s):                  16-31,48-63
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit:        KVM: Mitigation: VMX disabled
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed:             Mitigation; Enhanced IBRS
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Mitigation; TSX disabled

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] torch==2.5.0.dev20240829
[pip3] triton==3.0.0
[conda] blas                      1.0                         mkl  
[conda] mkl                       2023.1.0         h213fc3f_46344  
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] pytorch                   2.5.0.dev20240829 py3.12_cuda12.1_cudnn9.1.0_0    pytorch-nightly
[conda] pytorch-cuda              12.1                 ha16c6d3_6    pytorch-nightly
[conda] pytorch-mutex             1.0                        cuda    pytorch-nightly
[conda] torchtriton               3.0.0+dedb7bdf33           py312    pytorch-nightly

cc @ezyang @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @yf225 @Chillee @drisspg @yanboliang @BoyuanFeng

Metadata

Metadata

Assignees

No one assigned

    Labels

    module: flex attentionmodule: higher order operatorstorch.cond and similarmodule: pt2-dispatcherPT2 dispatcher-related issues (e.g., aotdispatch, functionalization, faketensor, custom-op,oncall: pt2triagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions