-
Notifications
You must be signed in to change notification settings - Fork 26.2k
Closed
Description
🐛 Describe the bug
The exported program is wrong for this specific model:
import torch
import torchvision
model = torchvision.models.mobilenet_v2(weights=None)
x = torch.rand((1, 3, 224, 224))
ep = torch.export.export(model, (x,))
torch.testing.assert_close(model(x), ep.module()(x))Mismatched elements: 1000 / 1000 (100.0%)
Greatest absolute difference: 0.2887793779373169 at index (0, 662) (up to 1e-05 allowed)
Greatest relative difference: 412.05242919921875 at index (0, 962) (up to 1.3e-06 allowed)
Versions
Collecting environment information...
PyTorch version: 2.10.0.dev20251114+cu130
Is debug build: False
CUDA used to build PyTorch: 13.0
ROCM used to build PyTorch: N/A
OS: Ubuntu 24.04.3 LTS (x86_64)
GCC version: (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version: Could not collect
CMake version: version 4.1.2
Libc version: glibc-2.39
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-6.6.87.2-microsoft-standard-WSL2-x86_64-with-glibc2.39
Is CUDA available: True
CUDA runtime version: 13.0.88
CUDA_MODULE_LOADING set to:
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4060 Laptop GPU
Nvidia driver version: 581.57
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.14.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.14.0
Is XPU available: False
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 20
On-line CPU(s) list: 0-19
Vendor ID: GenuineIntel
Model name: 13th Gen Intel(R) Core(TM) i7-13800H
CPU family: 6
Model: 186
Thread(s) per core: 2
Core(s) per socket: 10
Socket(s): 1
Stepping: 2
BogoMIPS: 5836.80
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni vnmi umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities
Virtualization: VT-x
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 480 KiB (10 instances)
L1i cache: 320 KiB (10 instances)
L2 cache: 12.5 MiB (10 instances)
L3 cache: 24 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-19
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Mitigation; Clear Register File
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] mypy==1.18.2
[pip3] mypy_extensions==1.1.0
[pip3] numpy==2.3.4
[pip3] nvidia-cublas==13.1.0.3
[pip3] nvidia-cuda-cupti==13.0.85
[pip3] nvidia-cuda-nvrtc==13.0.88
[pip3] nvidia-cuda-runtime==13.0.96
[pip3] nvidia-cudnn-cu13==9.13.0.50
[pip3] nvidia-cufft==12.0.0.61
[pip3] nvidia-curand==10.4.0.35
[pip3] nvidia-cusolver==12.0.4.66
[pip3] nvidia-cusparse==12.6.3.3
[pip3] nvidia-cusparselt-cu13==0.8.0
[pip3] nvidia-nccl-cu12==2.28.3
[pip3] nvidia-nccl-cu13==2.27.7
[pip3] nvidia-nvjitlink==13.0.88
[pip3] nvidia-nvtx==13.0.85
[pip3] onnx==1.21.0
[pip3] onnxruntime-genai-cuda==0.10.0
[pip3] onnxruntime-gpu==1.24.0
[pip3] optree==0.17.0
[pip3] pytorch-triton==3.5.1+gitbfeb0668
[pip3] torch==2.10.0.dev20251114+cu130
[pip3] torch_cluster==1.6.3
[pip3] torch-geometric==2.7.0
[pip3] torchaudio==2.10.0.dev20251103+cu130
[pip3] torchvision==0.25.0.dev20251115+cu130
[conda] Could not collect
Metadata
Metadata
Assignees
Labels
No labels