Skip to content

Conversation

angelayi
Copy link
Contributor

@angelayi angelayi commented Jul 7, 2021

Stack from ghstack:

Summary: Applied changes in convert to allow for ConvReLU2d layers

Initial Model: x -> conv1 -> relu

After fusion: x -> convRelu2d

After prepare: x -> input_quant_obs -> input_eq_obs1 -> convRelu2d -> output_quant_obs1

After equalization functions: x -> mul -> input_quant_obs (scaled) -> convRelu2d -> output_quant_obs

After convert: x -> mul -> quantize_per_tensor -> quantized::convRelu2d -> dequantize

Test Plan: python test/test_quantization.py TestEqualizeFx

Initial Model:

ConvReluModel(
  (fc): Conv2d(3, 5, kernel_size=(3, 3), stride=(1, 1))
  (relu): ReLU()
)

After prepare:

GraphModule(
  (x_activation_post_process_0): MinMaxObserver(min_val=5.960464477539063e-08, max_val=0.9999999403953552)
  (x_activation_post_process_0_equalization_process_0): _InputEqualizationObserver(
    (input_obs): PerChannelMinMaxObserver(min_val=tensor([1.1921e-07, 3.3379e-06, 5.9605e-08]), max_val=tensor([1.0000, 1.0000, 1.0000]))
  )
  (fc): ConvReLU2d(
    (0): Conv2d(3, 5, kernel_size=(3, 3), stride=(1, 1))
    (1): ReLU()
  )
  (fc_activation_post_process_0): MinMaxObserver(min_val=0.0, max_val=1.2341605424880981)
)

graph():
    %x : [#users=1] = placeholder[target=x]
    %x_activation_post_process_0 : [#users=1] = call_module[target=x_activation_post_process_0](args = (%x,), kwargs = {})
    %x_activation_post_process_0_equalization_process_0 : [#users=1] = call_module[target=x_activation_post_process_0_equalization_process_0](args = (%x_activation_post_process_0,), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%x_activation_post_process_0_equalization_process_0,), kwargs = {})
    %fc_activation_post_process_0 : [#users=1] = call_module[target=fc_activation_post_process_0](args = (%fc,), kwargs = {})
    return fc_activation_post_process_0

After equalization functions:

graph():
    %x : [#users=1] = placeholder[target=x]
    %x_equalization_scale0 : [#users=1] = get_attr[target=x_equalization_scale0]
    %mul : [#users=1] = call_function[target=torch.mul](args = (%x, %x_equalization_scale0), kwargs = {})
    %x_activation_post_process_0 : [#users=1] = call_module[target=x_activation_post_process_0](args = (%mul,), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%x_activation_post_process_0,), kwargs = {})
    %fc_activation_post_process_0 : [#users=1] = call_module[target=fc_activation_post_process_0](args = (%fc,), kwargs = {})
    return fc_activation_post_process_0

After convert:

graph():
    %x : [#users=1] = placeholder[target=x]
    %x_equalization_scale0 : [#users=1] = get_attr[target=x_equalization_scale0]
    %mul : [#users=1] = call_function[target=torch.mul](args = (%x, %x_equalization_scale0), kwargs = {})
    %fc_input_scale_0 : [#users=1] = get_attr[target=fc_input_scale_0]
    %fc_input_zero_point_0 : [#users=1] = get_attr[target=fc_input_zero_point_0]
    %quantize_per_tensor : [#users=1] = call_function[target=torch.quantize_per_tensor](args = (%mul, %fc_input_scale_0, %fc_input_zero_point_0, torch.quint8), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%quantize_per_tensor,), kwargs = {})
    %dequantize : [#users=1] = call_method[target=dequantize](args = (%fc,), kwargs = {})
    return dequantize

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: D29638275

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
@facebook-github-bot
Copy link
Contributor

facebook-github-bot commented Jul 7, 2021

💊 CI failures summary and remediations

As of commit e1e28e8 (more details on the Dr. CI page and at hud.pytorch.org/pr/61350):


  • 1/1 failures possibly* introduced in this PR
    • 1/1 non-scanned failure(s)

Preview docs built from this PR

This comment was automatically generated by Dr. CI (expand for details).Follow this link to opt-out of these comments for your Pull Requests.

Please report bugs/suggestions to the (internal) Dr. CI Users group.

Click here to manually regenerate this comment.

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
angelayi added a commit that referenced this pull request Jul 7, 2021
Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: f4be88c
Pull Request resolved: #61350
@angelayi angelayi requested review from jerryzh168, supriyar and vkuzo July 7, 2021 14:06
Summary: Applied changes in convert to allow for ConvReLU2d layers

Initial Model: `x -> conv1 -> relu`

After fusion: `x -> convRelu2d`

After prepare: `x -> input_quant_obs -> input_eq_obs1 -> convRelu2d -> output_quant_obs1`

After equalization functions: `x -> mul -> input_quant_obs (scaled) -> convRelu2d -> output_quant_obs`

After convert: `x -> mul -> quantize_per_tensor -> quantized::convRelu2d -> dequantize`

Test Plan: `python test/test_quantization.py TestEqualizeFx`

Initial Model:
```
ConvReluModel(
  (fc): Conv2d(3, 5, kernel_size=(3, 3), stride=(1, 1))
  (relu): ReLU()
)
```

After prepare:
```
GraphModule(
  (x_activation_post_process_0): MinMaxObserver(min_val=5.960464477539063e-08, max_val=0.9999999403953552)
  (x_activation_post_process_0_equalization_process_0): _InputEqualizationObserver(
    (input_obs): PerChannelMinMaxObserver(min_val=tensor([1.1921e-07, 3.3379e-06, 5.9605e-08]), max_val=tensor([1.0000, 1.0000, 1.0000]))
  )
  (fc): ConvReLU2d(
    (0): Conv2d(3, 5, kernel_size=(3, 3), stride=(1, 1))
    (1): ReLU()
  )
  (fc_activation_post_process_0): MinMaxObserver(min_val=0.0, max_val=1.2341605424880981)
)

graph():
    %x : [#users=1] = placeholder[target=x]
    %x_activation_post_process_0 : [#users=1] = call_module[target=x_activation_post_process_0](args = (%x,), kwargs = {})
    %x_activation_post_process_0_equalization_process_0 : [#users=1] = call_module[target=x_activation_post_process_0_equalization_process_0](args = (%x_activation_post_process_0,), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%x_activation_post_process_0_equalization_process_0,), kwargs = {})
    %fc_activation_post_process_0 : [#users=1] = call_module[target=fc_activation_post_process_0](args = (%fc,), kwargs = {})
    return fc_activation_post_process_0
```

After equalization functions:
```
graph():
    %x : [#users=1] = placeholder[target=x]
    %x_equalization_scale0 : [#users=1] = get_attr[target=x_equalization_scale0]
    %mul : [#users=1] = call_function[target=torch.mul](args = (%x, %x_equalization_scale0), kwargs = {})
    %x_activation_post_process_0 : [#users=1] = call_module[target=x_activation_post_process_0](args = (%mul,), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%x_activation_post_process_0,), kwargs = {})
    %fc_activation_post_process_0 : [#users=1] = call_module[target=fc_activation_post_process_0](args = (%fc,), kwargs = {})
    return fc_activation_post_process_0
```

After convert:
```
graph():
    %x : [#users=1] = placeholder[target=x]
    %x_equalization_scale0 : [#users=1] = get_attr[target=x_equalization_scale0]
    %mul : [#users=1] = call_function[target=torch.mul](args = (%x, %x_equalization_scale0), kwargs = {})
    %fc_input_scale_0 : [#users=1] = get_attr[target=fc_input_scale_0]
    %fc_input_zero_point_0 : [#users=1] = get_attr[target=fc_input_zero_point_0]
    %quantize_per_tensor : [#users=1] = call_function[target=torch.quantize_per_tensor](args = (%mul, %fc_input_scale_0, %fc_input_zero_point_0, torch.quint8), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%quantize_per_tensor,), kwargs = {})
    %dequantize : [#users=1] = call_method[target=dequantize](args = (%fc,), kwargs = {})
    return dequantize
```

Reviewers:

Subscribers:

Tasks:

Tags:

[ghstack-poisoned]
angelayi added a commit that referenced this pull request Jul 7, 2021
Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: ffa6c74
Pull Request resolved: #61350
@angelayi
Copy link
Contributor Author

angelayi commented Jul 9, 2021

@angelayi has imported this pull request. If you are a Facebook employee, you can view this diff on Phabricator.

Copy link
Contributor

@jerryzh168 jerryzh168 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LG, had some nit comments

Summary: Applied changes in convert to allow for ConvReLU2d layers

Initial Model: `x -> conv1 -> relu`

After fusion: `x -> convRelu2d`

After prepare: `x -> input_quant_obs -> input_eq_obs1 -> convRelu2d -> output_quant_obs1`

After equalization functions: `x -> mul -> input_quant_obs (scaled) -> convRelu2d -> output_quant_obs`

After convert: `x -> mul -> quantize_per_tensor -> quantized::convRelu2d -> dequantize`

Test Plan: `python test/test_quantization.py TestEqualizeFx`

Initial Model:
```
ConvReluModel(
  (fc): Conv2d(3, 5, kernel_size=(3, 3), stride=(1, 1))
  (relu): ReLU()
)
```

After prepare:
```
GraphModule(
  (x_activation_post_process_0): MinMaxObserver(min_val=5.960464477539063e-08, max_val=0.9999999403953552)
  (x_activation_post_process_0_equalization_process_0): _InputEqualizationObserver(
    (input_obs): PerChannelMinMaxObserver(min_val=tensor([1.1921e-07, 3.3379e-06, 5.9605e-08]), max_val=tensor([1.0000, 1.0000, 1.0000]))
  )
  (fc): ConvReLU2d(
    (0): Conv2d(3, 5, kernel_size=(3, 3), stride=(1, 1))
    (1): ReLU()
  )
  (fc_activation_post_process_0): MinMaxObserver(min_val=0.0, max_val=1.2341605424880981)
)

graph():
    %x : [#users=1] = placeholder[target=x]
    %x_activation_post_process_0 : [#users=1] = call_module[target=x_activation_post_process_0](args = (%x,), kwargs = {})
    %x_activation_post_process_0_equalization_process_0 : [#users=1] = call_module[target=x_activation_post_process_0_equalization_process_0](args = (%x_activation_post_process_0,), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%x_activation_post_process_0_equalization_process_0,), kwargs = {})
    %fc_activation_post_process_0 : [#users=1] = call_module[target=fc_activation_post_process_0](args = (%fc,), kwargs = {})
    return fc_activation_post_process_0
```

After equalization functions:
```
graph():
    %x : [#users=1] = placeholder[target=x]
    %x_equalization_scale0 : [#users=1] = get_attr[target=x_equalization_scale0]
    %mul : [#users=1] = call_function[target=torch.mul](args = (%x, %x_equalization_scale0), kwargs = {})
    %x_activation_post_process_0 : [#users=1] = call_module[target=x_activation_post_process_0](args = (%mul,), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%x_activation_post_process_0,), kwargs = {})
    %fc_activation_post_process_0 : [#users=1] = call_module[target=fc_activation_post_process_0](args = (%fc,), kwargs = {})
    return fc_activation_post_process_0
```

After convert:
```
graph():
    %x : [#users=1] = placeholder[target=x]
    %x_equalization_scale0 : [#users=1] = get_attr[target=x_equalization_scale0]
    %mul : [#users=1] = call_function[target=torch.mul](args = (%x, %x_equalization_scale0), kwargs = {})
    %fc_input_scale_0 : [#users=1] = get_attr[target=fc_input_scale_0]
    %fc_input_zero_point_0 : [#users=1] = get_attr[target=fc_input_zero_point_0]
    %quantize_per_tensor : [#users=1] = call_function[target=torch.quantize_per_tensor](args = (%mul, %fc_input_scale_0, %fc_input_zero_point_0, torch.quint8), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%quantize_per_tensor,), kwargs = {})
    %dequantize : [#users=1] = call_method[target=dequantize](args = (%fc,), kwargs = {})
    return dequantize
```

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D29638275](https://our.internmc.facebook.com/intern/diff/D29638275)

[ghstack-poisoned]
angelayi added a commit that referenced this pull request Jul 12, 2021
Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: 003459b
Pull Request resolved: #61350
Summary: Applied changes in convert to allow for ConvReLU2d layers

Initial Model: `x -> conv1 -> relu`

After fusion: `x -> convRelu2d`

After prepare: `x -> input_quant_obs -> input_eq_obs1 -> convRelu2d -> output_quant_obs1`

After equalization functions: `x -> mul -> input_quant_obs (scaled) -> convRelu2d -> output_quant_obs`

After convert: `x -> mul -> quantize_per_tensor -> quantized::convRelu2d -> dequantize`

Test Plan: `python test/test_quantization.py TestEqualizeFx`

Initial Model:
```
ConvReluModel(
  (fc): Conv2d(3, 5, kernel_size=(3, 3), stride=(1, 1))
  (relu): ReLU()
)
```

After prepare:
```
GraphModule(
  (x_activation_post_process_0): MinMaxObserver(min_val=5.960464477539063e-08, max_val=0.9999999403953552)
  (x_activation_post_process_0_equalization_process_0): _InputEqualizationObserver(
    (input_obs): PerChannelMinMaxObserver(min_val=tensor([1.1921e-07, 3.3379e-06, 5.9605e-08]), max_val=tensor([1.0000, 1.0000, 1.0000]))
  )
  (fc): ConvReLU2d(
    (0): Conv2d(3, 5, kernel_size=(3, 3), stride=(1, 1))
    (1): ReLU()
  )
  (fc_activation_post_process_0): MinMaxObserver(min_val=0.0, max_val=1.2341605424880981)
)

graph():
    %x : [#users=1] = placeholder[target=x]
    %x_activation_post_process_0 : [#users=1] = call_module[target=x_activation_post_process_0](args = (%x,), kwargs = {})
    %x_activation_post_process_0_equalization_process_0 : [#users=1] = call_module[target=x_activation_post_process_0_equalization_process_0](args = (%x_activation_post_process_0,), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%x_activation_post_process_0_equalization_process_0,), kwargs = {})
    %fc_activation_post_process_0 : [#users=1] = call_module[target=fc_activation_post_process_0](args = (%fc,), kwargs = {})
    return fc_activation_post_process_0
```

After equalization functions:
```
graph():
    %x : [#users=1] = placeholder[target=x]
    %x_equalization_scale0 : [#users=1] = get_attr[target=x_equalization_scale0]
    %mul : [#users=1] = call_function[target=torch.mul](args = (%x, %x_equalization_scale0), kwargs = {})
    %x_activation_post_process_0 : [#users=1] = call_module[target=x_activation_post_process_0](args = (%mul,), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%x_activation_post_process_0,), kwargs = {})
    %fc_activation_post_process_0 : [#users=1] = call_module[target=fc_activation_post_process_0](args = (%fc,), kwargs = {})
    return fc_activation_post_process_0
```

After convert:
```
graph():
    %x : [#users=1] = placeholder[target=x]
    %x_equalization_scale0 : [#users=1] = get_attr[target=x_equalization_scale0]
    %mul : [#users=1] = call_function[target=torch.mul](args = (%x, %x_equalization_scale0), kwargs = {})
    %fc_input_scale_0 : [#users=1] = get_attr[target=fc_input_scale_0]
    %fc_input_zero_point_0 : [#users=1] = get_attr[target=fc_input_zero_point_0]
    %quantize_per_tensor : [#users=1] = call_function[target=torch.quantize_per_tensor](args = (%mul, %fc_input_scale_0, %fc_input_zero_point_0, torch.quint8), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%quantize_per_tensor,), kwargs = {})
    %dequantize : [#users=1] = call_method[target=dequantize](args = (%fc,), kwargs = {})
    return dequantize
```

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D29638275](https://our.internmc.facebook.com/intern/diff/D29638275)

[ghstack-poisoned]
Summary: Applied changes in convert to allow for ConvReLU2d layers

Initial Model: `x -> conv1 -> relu`

After fusion: `x -> convRelu2d`

After prepare: `x -> input_quant_obs -> input_eq_obs1 -> convRelu2d -> output_quant_obs1`

After equalization functions: `x -> mul -> input_quant_obs (scaled) -> convRelu2d -> output_quant_obs`

After convert: `x -> mul -> quantize_per_tensor -> quantized::convRelu2d -> dequantize`

Test Plan: `python test/test_quantization.py TestEqualizeFx`

Initial Model:
```
ConvReluModel(
  (fc): Conv2d(3, 5, kernel_size=(3, 3), stride=(1, 1))
  (relu): ReLU()
)
```

After prepare:
```
GraphModule(
  (x_activation_post_process_0): MinMaxObserver(min_val=5.960464477539063e-08, max_val=0.9999999403953552)
  (x_activation_post_process_0_equalization_process_0): _InputEqualizationObserver(
    (input_obs): PerChannelMinMaxObserver(min_val=tensor([1.1921e-07, 3.3379e-06, 5.9605e-08]), max_val=tensor([1.0000, 1.0000, 1.0000]))
  )
  (fc): ConvReLU2d(
    (0): Conv2d(3, 5, kernel_size=(3, 3), stride=(1, 1))
    (1): ReLU()
  )
  (fc_activation_post_process_0): MinMaxObserver(min_val=0.0, max_val=1.2341605424880981)
)

graph():
    %x : [#users=1] = placeholder[target=x]
    %x_activation_post_process_0 : [#users=1] = call_module[target=x_activation_post_process_0](args = (%x,), kwargs = {})
    %x_activation_post_process_0_equalization_process_0 : [#users=1] = call_module[target=x_activation_post_process_0_equalization_process_0](args = (%x_activation_post_process_0,), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%x_activation_post_process_0_equalization_process_0,), kwargs = {})
    %fc_activation_post_process_0 : [#users=1] = call_module[target=fc_activation_post_process_0](args = (%fc,), kwargs = {})
    return fc_activation_post_process_0
```

After equalization functions:
```
graph():
    %x : [#users=1] = placeholder[target=x]
    %x_equalization_scale0 : [#users=1] = get_attr[target=x_equalization_scale0]
    %mul : [#users=1] = call_function[target=torch.mul](args = (%x, %x_equalization_scale0), kwargs = {})
    %x_activation_post_process_0 : [#users=1] = call_module[target=x_activation_post_process_0](args = (%mul,), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%x_activation_post_process_0,), kwargs = {})
    %fc_activation_post_process_0 : [#users=1] = call_module[target=fc_activation_post_process_0](args = (%fc,), kwargs = {})
    return fc_activation_post_process_0
```

After convert:
```
graph():
    %x : [#users=1] = placeholder[target=x]
    %x_equalization_scale0 : [#users=1] = get_attr[target=x_equalization_scale0]
    %mul : [#users=1] = call_function[target=torch.mul](args = (%x, %x_equalization_scale0), kwargs = {})
    %fc_input_scale_0 : [#users=1] = get_attr[target=fc_input_scale_0]
    %fc_input_zero_point_0 : [#users=1] = get_attr[target=fc_input_zero_point_0]
    %quantize_per_tensor : [#users=1] = call_function[target=torch.quantize_per_tensor](args = (%mul, %fc_input_scale_0, %fc_input_zero_point_0, torch.quint8), kwargs = {})
    %fc : [#users=1] = call_module[target=fc](args = (%quantize_per_tensor,), kwargs = {})
    %dequantize : [#users=1] = call_method[target=dequantize](args = (%fc,), kwargs = {})
    return dequantize
```

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D29638275](https://our.internmc.facebook.com/intern/diff/D29638275)

[ghstack-poisoned]
angelayi added a commit that referenced this pull request Jul 13, 2021
Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: eefa44d
Pull Request resolved: #61350
@angelayi
Copy link
Contributor Author

@angelayi has imported this pull request. If you are a Facebook employee, you can view this diff on Phabricator.

@facebook-github-bot
Copy link
Contributor

This pull request has been merged in 0751a41.

@facebook-github-bot facebook-github-bot deleted the gh/angelayi/28/head branch July 17, 2021 14:17
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants