Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 78 additions & 0 deletions test/bench.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
# Parse local options first, and rewrite the sys.argv[].
# This allows to pickup the local/development XLA modules before the installed ones.
import os
import sys

# Setup import folders.
_XLA_FOLDER = os.path.dirname(os.path.dirname(os.path.abspath(sys.argv[0])))
sys.path.append(os.path.join(os.path.dirname(_XLA_FOLDER), 'test'))
sys.path.insert(0, _XLA_FOLDER)

# Normal imports section starts here.
import argparse
import inspect
import re
import torch
import torch.nn as nn
import torch.optim as optim
import torch_xla
import torch_xla_py.data_parallel as dp
import torch_xla_py.model_comparator as mc
import torch_xla_py.parallel_loader as pl
import torch_xla_py.utils as xu
import torch_xla_py.xla_model as xm


def _use_result(*args):
for v in args:
v.cpu()


def bench_add_mul_div(args):
device = xm.xla_device()
a = torch.rand(8, 8)
b = torch.rand(8, 8).abs() + 1.0
c = a * b - a / b
xla_a = a.to(device)
xla_b = b.to(device)
for i in range(0, xu.getenv_as('ADD_MUL_DIV_LOOPS', int, 1000)):
xla_c = xla_a * xla_b - xla_a / xla_b
_use_result(xla_c)
xu.get_print_fn()(torch_xla._XLAC._xla_metrics_report())


def run_benchmarks(args):
benchs = {}
for name, func in inspect.getmembers(sys.modules[__name__],
inspect.isfunction):
if re.match(r'bench_', name):
benchs[name] = func
if args.benchs:
run_benchs = []
bench_keys = benchs.keys()
for name in args.benchs:
for bk in bench_keys:
if re.match(name, bk):
run_benchs.append(bk)
break
run_benchs = list(set(run_benchs))
else:
run_benchs = benchs.keys()
for name in sorted(run_benchs):
with xu.TimedScope(msg='Benchmark "{}": '.format(name)):
try:
benchs[name](args)
except Exception as e:
print('Failed running benchmark "{}": {}'.format(name, e))


if __name__ == '__main__':
parser = argparse.ArgumentParser(add_help=False)
args, benchs = parser.parse_known_args()
args.benchs = benchs

torch.set_default_tensor_type('torch.FloatTensor')
torch.manual_seed(42)
torch_xla._XLAC._xla_set_use_full_mat_mul_precision(
use_full_mat_mul_precision=True)
run_benchmarks(args)