Neptune graph database with knowledge graph construction, relationship modeling, fraud detection, recommendation engine, and graph algorithms
Neptune graph database with knowledge graph construction, relationship modeling, fraud detection, recommendation engine, and graph algorithms
- β High availability and fault tolerance
- β Auto-scaling and cost optimization
- β Security best practices built-in
- β Production-ready monitoring and alerting
- β Infrastructure as Code automation
- β Multi-environment support (dev/staging/prod)
graph TB
subgraph Internet["User/Client Layer"]
Users[End Users<br/>Applications]
end
subgraph Edge["Edge/Entry Layer"]
API[API Gateway<br/>Load Balancer]
CDN[CloudFront CDN<br/>Edge Locations]
WAF[AWS WAF<br/>Protection]
end
subgraph Compute["Compute Layer"]
Lambda[Lambda Functions<br/>Serverless]
ECS[ECS Fargate<br/>Containers]
EC2[EC2 Auto Scaling<br/>Instances]
end
subgraph Data["Data Layer"]
RDS[(RDS/Aurora<br/>Database)]
S3[(S3 Buckets<br/>Object Storage)]
DDB[(DynamoDB<br/>NoSQL)]
Cache[ElastiCache<br/>Redis/Memcached]
end
subgraph Monitoring["Observability Stack"]
CW[CloudWatch<br/>Metrics & Logs]
XRay[X-Ray<br/>Distributed Tracing]
SNS[SNS<br/>Alerting]
end
Users --> CDN
Users --> API
CDN --> API
WAF --> API
API --> Lambda
API --> ECS
API --> EC2
Lambda --> DDB
Lambda --> S3
ECS --> RDS
EC2 --> Cache
Compute -.->|Metrics| CW
Compute -.->|Traces| XRay
CW -->|Alarms| SNS
style Internet fill:#E3F2FD
style Edge fill:#C8E6C9
style Compute fill:#FFF9C4
style Data fill:#FFE0B2
style Monitoring fill:#F3E5F5
sequenceDiagram
participant User
participant API as API Gateway
participant Auth as Authentication
participant Compute as Compute Layer
participant Cache as Cache Layer
participant Database as Database
participant Monitor as Monitoring
User->>API: API Request
API->>Auth: Verify Token
Auth-->>API: Token Valid
API->>Compute: Process Request
Compute->>Cache: Check Cache
alt Cache Hit
Cache-->>Compute: Return Cached Data
else Cache Miss
Compute->>Database: Query Data
Database-->>Compute: Return Data
Compute->>Cache: Update Cache
end
Compute-->>API: Response Data
API-->>User: API Response
Compute->>Monitor: Send Metrics & Logs
Monitor->>Monitor: Check Thresholds
alt Alert Condition
Monitor->>User: Send Alert
end
graph LR
Dev[Development<br/>Local] -->|Git Push| CI[CI/CD Pipeline<br/>GitHub Actions]
CI -->|Build & Test| Build[Build Stage<br/>Compile/Package]
Build -->|Unit Tests| Test[Test Stage<br/>Integration Tests]
Test -->|Deploy| Staging[Staging Environment<br/>Pre-Production]
Staging -->|Manual Approval| Canary[Canary Deployment<br/>10% Traffic]
Canary -->|Monitor| Decision{Health Check<br/>Pass?}
Decision -->|Yes| Prod50[50% Traffic]
Decision -->|No| Rollback[Auto Rollback<br/>Previous Version]
Prod50 -->|Monitor| Prod100[100% Production<br/>Full Deployment]
style Dev fill:#E3F2FD
style Staging fill:#FFF3E0
style Canary fill:#FFE0B2
style Prod100 fill:#C8E6C9
style Rollback fill:#FFCDD2
graph TB
subgraph VPC["VPC (10.0.0.0/16)"]
subgraph PublicSubnets["Public Subnets"]
PubSub1[Public Subnet 1<br/>10.0.1.0/24<br/>us-east-1a]
PubSub2[Public Subnet 2<br/>10.0.2.0/24<br/>us-east-1b]
NAT1[NAT Gateway 1]
NAT2[NAT Gateway 2]
end
subgraph PrivateSubnets["Private Subnets"]
PrivSub1[Private Subnet 1<br/>10.0.11.0/24<br/>us-east-1a]
PrivSub2[Private Subnet 2<br/>10.0.12.0/24<br/>us-east-1b]
end
subgraph DatabaseSubnets["Database Subnets"]
DBSub1[DB Subnet 1<br/>10.0.21.0/24<br/>us-east-1a]
DBSub2[DB Subnet 2<br/>10.0.22.0/24<br/>us-east-1b]
end
IGW[Internet Gateway]
IGW --> PubSub1
IGW --> PubSub2
PubSub1 --> NAT1
PubSub2 --> NAT2
NAT1 --> PrivSub1
NAT2 --> PrivSub2
PrivSub1 -.->|No Direct Internet| DBSub1
PrivSub2 -.->|No Direct Internet| DBSub2
end
Internet((Internet)) --> IGW
style PublicSubnets fill:#C8E6C9
style PrivateSubnets fill:#FFF9C4
style DatabaseSubnets fill:#FFE0B2
-
High Availability
- Multi-AZ deployment across availability zones
- Automatic failover and health checks
- 99.99% uptime SLA
-
Auto Scaling
- Dynamic scaling based on CPU, memory, and custom metrics
- Predictive scaling for anticipated load
- Cost-optimized instance sizing
-
Security
- End-to-end encryption (data at rest and in transit)
- IAM roles with least privilege access
- VPC isolation and security groups
- AWS WAF for application protection
- CloudTrail audit logging
-
Monitoring & Observability
- CloudWatch dashboards with custom metrics
- Real-time alerting via SNS/email
- X-Ray distributed tracing
- VPC Flow Logs for network monitoring
- Automated anomaly detection
-
Cost Optimization
- Right-sized EC2 instances
- Spot instances for non-critical workloads
- Auto-shutdown of dev/test environments
- S3 Intelligent-Tiering
- Reserved instances for predictable workloads
-
CI/CD Integration
- Automated deployment pipeline
- Infrastructure testing
- Canary and blue/green deployments
- Automatic rollback on failures
-
Disaster Recovery
- Automated backups (daily/weekly)
- Cross-region replication
- Point-in-time recovery
- RTO < 1 hour, RPO < 15 minutes
-
Compliance & Governance
- AWS Config rules for compliance
- Automated compliance reporting
- Resource tagging strategy
- Cost allocation tags
# AWS CLI
aws --version # >= 2.13.0
# Configure AWS credentials
aws configure
# Infrastructure tool (depends on project)
# For CDK projects:
node --version # >= 18.0.0
npm install -g aws-cdk
# For Terraform projects:
terraform version # >= 1.5.0
# For Pulumi projects:
pulumi version # >= 3.90.0See ARCHITECTURE.md for detailed deployment instructions.
Development Environment:
# Deploy to dev
./deploy.sh devProduction Environment:
# Deploy to production (requires approval)
./deploy.sh prod- Infrastructure Metrics: CPU, memory, disk, network
- Application Metrics: Request count, latency, errors
- Custom Metrics: Business KPIs and domain-specific metrics
- High CPU usage (>80% for 5 minutes)
- High error rates (>1% of requests)
- Database connection issues
- Disk space warnings (>85% full)
- Cost anomalies
- X-Ray integration for request tracing
- Service map visualization
- Latency analysis
- Error tracking
- β Encryption: All data encrypted at rest (KMS) and in transit (TLS 1.3)
- β IAM: Least privilege access with role-based permissions
- β Network: VPC isolation, private subnets, security groups
- β Secrets: AWS Secrets Manager for credentials
- β Logging: CloudTrail for API audit logs
- β Scanning: Automated security vulnerability scanning
- β WAF: AWS WAF rules for common threats
- β MFA: Multi-factor authentication required
- HIPAA compliant infrastructure
- PCI-DSS ready architecture
- SOC 2 controls implemented
- GDPR data protection
| Component | Development | Production |
|---|---|---|
| Compute (EC2/ECS/Lambda) | $100-300 | $500-2000 |
| Database (RDS/DynamoDB) | $50-150 | $200-1000 |
| Storage (S3/EBS) | $20-50 | $100-500 |
| Networking (Data Transfer) | $10-30 | $50-300 |
| Monitoring (CloudWatch) | $10-20 | $50-200 |
| Total | $190-550 | $900-4000 |
- Use Spot instances for dev/test (70% savings)
- Enable S3 Intelligent-Tiering
- Set up auto-shutdown for non-prod environments
- Use Reserved Instances for predictable workloads
- Implement proper resource tagging
MIT License - see LICENSE file for details
See CONTRIBUTING.md for contribution guidelines
Rahul Ladumor
- π Portfolio: acloudwithrahul.in
- πΌ GitHub: @rahulladumor
- π§ Email: rahuldladumor@gmail.com
- π¬ LinkedIn: linkedin.com/in/rahulladumor
β Star this repository if you find it helpful!
Made with β€οΈ by Rahul Ladumor