Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 2 additions & 4 deletions src/llmperf/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,8 @@ def randomly_sample_sonnet_lines_prompt(
prompt_tokens_mean: int = 550,
prompt_tokens_stddev: int = 250,
expect_output_tokens: int = 150,
tokenizer = LlamaTokenizerFast.from_pretrained(
"hf-internal-testing/llama-tokenizer")
) -> Tuple[str, int]:
"""Generate a prompt that randomly samples lines from a the shakespeare sonnet at sonnet.txt.

Expand All @@ -80,10 +82,6 @@ def randomly_sample_sonnet_lines_prompt(
A tuple of the prompt and the length of the prompt.
"""

tokenizer = LlamaTokenizerFast.from_pretrained(
"hf-internal-testing/llama-tokenizer"
)

get_token_length = lambda text: len(tokenizer.encode(text))

prompt = (
Expand Down
28 changes: 17 additions & 11 deletions token_benchmark_ray.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,21 @@ def get_token_throughput_latencies(
req_launcher = RequestsLauncher(clients)
completed_requests = []
num_completed_requests = 0
# make up prompts outside of send loop for faster benchmarking loop
num_output_tokens_list = []
prompts = []
for i in range(max_num_completed_requests):
num_output_tokens = (sample_random_positive_int(
mean_output_tokens, stddev_output_tokens
))
num_output_tokens_list.append(num_output_tokens)

prompts.append(randomly_sample_sonnet_lines_prompt(
prompt_tokens_mean=mean_input_tokens,
prompt_tokens_stddev=stddev_input_tokens,
expect_output_tokens=num_output_tokens,
tokenizer=tokenizer
))
start_time = time.monotonic()
iter = 0
pbar = tqdm(total=max_num_completed_requests)
Expand All @@ -79,21 +94,12 @@ def get_token_throughput_latencies(
and len(completed_requests) < max_num_completed_requests
):
iter += 1
num_output_tokens = sample_random_positive_int(
mean_output_tokens, stddev_output_tokens
)

prompt = randomly_sample_sonnet_lines_prompt(
prompt_tokens_mean=mean_input_tokens,
prompt_tokens_stddev=stddev_input_tokens,
expect_output_tokens=num_output_tokens,
)

default_sampling_params = {"max_tokens": num_output_tokens}
default_sampling_params = {"max_tokens": num_output_tokens_list.pop()}
default_sampling_params.update(additional_sampling_params)
request_config = RequestConfig(
model=model,
prompt=prompt,
prompt=prompts.pop(),
sampling_params=default_sampling_params,
llm_api=llm_api,
)
Expand Down