Skip to content

rcdelacruz/dataworks-maxcompute-practice

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

20 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

DataWorks & MaxCompute Practice Project

A comprehensive, production-ready learning repository for Alibaba Cloud DataWorks and MaxCompute with realistic sample data, ETL workflows, and advanced features.

🎯 Project Status: 100% Core Complete βœ…

This project provides a complete learning environment with:

  • Realistic sample datasets for hands-on practice
  • Comprehensive SQL examples from basic to advanced operations
  • Complete ETL framework with data quality monitoring
  • Custom UDF examples for Java and Python
  • Automated workflow orchestration with DataWorks
  • Professional documentation and troubleshooting guides

πŸ“ Project Structure

dataworks-maxcompute-practice/
β”œβ”€β”€ data/                     # Sample datasets (8 files)
β”‚   β”œβ”€β”€ customers.csv         # Customer master data
β”‚   β”œβ”€β”€ products.csv          # Product catalog  
β”‚   β”œβ”€β”€ orders.csv            # Order transactions
β”‚   β”œβ”€β”€ order_items.csv       # Order line items
β”‚   β”œβ”€β”€ web_sessions.csv      # User session analytics
β”‚   β”œβ”€β”€ page_views.csv        # Page view events
β”‚   β”œβ”€β”€ user_events.csv       # Custom interaction events
β”‚   └── suppliers.csv         # Supplier information
β”œβ”€β”€ sql/                      # MaxCompute SQL scripts (6 scripts)
β”‚   β”œβ”€β”€ 01_create_tables.sql  # Table creation and schemas
β”‚   β”œβ”€β”€ 02_load_data.sql      # Data loading techniques
β”‚   β”œβ”€β”€ 03_basic_queries.sql  # Basic SQL operations
β”‚   β”œβ”€β”€ 04_joins_analytics.sql # Advanced analytics
β”‚   β”œβ”€β”€ 05_etl_workflows.sql  # ETL transformation patterns
β”‚   └── 06_data_quality.sql   # Data quality framework
β”œβ”€β”€ workflows/                # DataWorks workflow definitions
β”‚   └── daily_etl_workflow.json # Complete ETL orchestration
β”œβ”€β”€ udf/                      # User Defined Functions
β”‚   β”œβ”€β”€ java/StringUtils.java # String processing utilities
β”‚   └── python/text_analytics.py # NLP and text analysis
β”œβ”€β”€ scripts/                  # Utility scripts
β”‚   └── data_generator.py     # Generate large-scale test data
β”œβ”€β”€ docs/                     # Documentation and guides
β”‚   β”œβ”€β”€ getting_started.md    # Comprehensive setup guide
β”‚   └── troubleshooting.md    # Common issues and solutions
β”œβ”€β”€ tests/                    # Test scripts
β”‚   └── test_queries.sql      # Comprehensive validation tests
β”œβ”€β”€ TODO.md                   # Project completion status
└── README.md                 # This file

πŸš€ Quick Start (15 minutes)

1. Prerequisites

  • Alibaba Cloud account with DataWorks and MaxCompute enabled
  • Basic SQL knowledge
  • Access to DataWorks console

2. Setup Your Environment

# Clone the repository
git clone https://github.com/rcdelacruz/dataworks-maxcompute-practice.git
cd dataworks-maxcompute-practice

# Follow the detailed setup guide
open docs/getting_started.md

3. Create Tables and Load Data

  1. Run table creation scripts: sql/01_create_tables.sql
  2. Load sample data: sql/02_load_data.sql
  3. Verify installation: tests/test_queries.sql

4. Start Learning

Begin with Module 1 and progress through the learning path outlined in the getting started guide.

πŸ“Š Sample Datasets

E-commerce Data (Complete Transactional System)

  • customers.csv: Customer master data with demographics
  • products.csv: Product catalog with pricing and categories
  • orders.csv: Order transactions with status tracking
  • order_items.csv: Detailed line items with quantities and pricing
  • suppliers.csv: Supplier information and ratings

Web Analytics Data (Complete Digital Analytics)

  • web_sessions.csv: User session data with device and traffic source info
  • page_views.csv: Page view events with timing and referrer data
  • user_events.csv: Custom interaction events (clicks, scrolls, forms)

Data Relationships

All datasets are interconnected with proper foreign key relationships, enabling realistic join operations and complex analytics scenarios.

πŸŽ“ Learning Modules

Module 1: Basic Operations (1-2 hours)

Objective: Master fundamental MaxCompute SQL operations

  • Table creation and schema design
  • Data loading techniques and best practices
  • Basic queries, filtering, and aggregations
  • Files: sql/01_create_tables.sql, sql/02_load_data.sql, sql/03_basic_queries.sql

Module 2: ETL Workflows (2-3 hours)

Objective: Build production-grade ETL pipelines

  • Multi-table joins and complex analytics
  • Data quality checks and cleansing
  • Incremental processing patterns
  • Files: sql/04_joins_analytics.sql, sql/05_etl_workflows.sql, sql/06_data_quality.sql

Module 3: Advanced Features (3-4 hours)

Objective: Implement custom functions and advanced analytics

  • User Defined Functions (Java and Python)
  • Text processing and analytics
  • Performance optimization techniques
  • Files: udf/java/StringUtils.java, udf/python/text_analytics.py

Module 4: DataWorks Integration (2-3 hours)

Objective: Master workflow orchestration and automation

  • Workflow scheduling and dependencies
  • Error handling and monitoring
  • Production deployment patterns
  • Files: workflows/daily_etl_workflow.json

πŸ› οΈ Advanced Features

Custom UDF Examples

  • Java StringUtils: Comprehensive string manipulation and validation functions
  • Python Text Analytics: NLP processing including sentiment analysis and keyword extraction

ETL Framework

  • Data Quality Monitoring: Automated quality checks with alerting
  • Incremental Processing: Change data capture and delta processing patterns
  • Performance Optimization: Query optimization and cost management

Workflow Orchestration

  • Dependency Management: Complex workflow dependencies with error handling
  • Monitoring & Alerting: SLA monitoring with automated notifications
  • Resource Management: Memory and CPU optimization configurations

πŸ§ͺ Data Generation

Generate large-scale datasets for performance testing:

# Generate 10,000 customers
python scripts/data_generator.py --table customers --records 10000

# Generate all tables with 5,000 records each
python scripts/data_generator.py --table all --records 5000

# Generate 100,000 web sessions for specific date range
python scripts/data_generator.py --table web_sessions --records 100000

πŸ“š Documentation

Essential Guides

SQL Reference

All SQL scripts include detailed comments explaining:

  • MaxCompute-specific syntax and functions
  • Best practices and optimization techniques
  • Real-world use case scenarios
  • Expected outputs and results

πŸ”§ Testing and Validation

Comprehensive Test Suite

Run the complete validation suite to verify your setup:

-- Execute all tests
@sql/tests/test_queries.sql

-- Verify data quality
@sql/06_data_quality.sql

Test Coverage

  • Data integrity and referential consistency
  • Query performance and optimization
  • UDF functionality and error handling
  • Workflow execution and dependency management

🌟 Key Features

Production-Ready Components

  • βœ… Realistic Data Models: Based on real e-commerce and analytics patterns
  • βœ… Complete ETL Framework: Industry-standard data processing patterns
  • βœ… Quality Assurance: Comprehensive data quality and testing framework
  • βœ… Performance Optimized: Query optimization and cost management examples
  • βœ… Scalable Architecture: Designed for both learning and production use

Learning-Focused Design

  • βœ… Progressive Complexity: From basic to advanced concepts
  • βœ… Hands-on Examples: Practical exercises with real business scenarios
  • βœ… Best Practices: Industry-standard patterns and techniques
  • βœ… Comprehensive Documentation: Detailed guides and troubleshooting

πŸš€ Future Enhancements (Optional)

While the core project is 100% complete, these optional enhancements could extend its capabilities:

Advanced SQL Examples

  • Performance optimization patterns
  • Machine learning feature preparation
  • Real-time processing examples
  • Security and permissions

Additional Workflows

  • Customer segmentation automation
  • ML model training pipelines
  • Real-time analytics processing

Extended Utilities

  • Performance monitoring dashboard
  • Cost optimization analyzer
  • Automated backup solutions

See TODO.md for the complete list of optional enhancements.

🀝 Contributing

We welcome contributions! Here's how you can help:

Areas for Contribution

  • Additional sample datasets
  • More UDF examples
  • Advanced workflow patterns
  • Documentation improvements
  • Performance optimization examples

Contribution Process

  1. Fork the repository
  2. Create a feature branch
  3. Add your improvements
  4. Test thoroughly
  5. Submit a pull request

πŸ“ž Support and Community

Getting Help

  • Documentation: Check the comprehensive guides in /docs
  • Issues: Open GitHub issues for questions or problems
  • Discussions: Use GitHub Discussions for general questions

Professional Support

  • Alibaba Cloud Technical Support
  • DataWorks Consulting Services
  • MaxCompute Training Programs

πŸ“ˆ Success Metrics

After completing this project, you'll be able to:

  • βœ… Design and implement scalable data warehouse solutions
  • βœ… Build production-grade ETL pipelines with monitoring
  • βœ… Optimize query performance and manage costs effectively
  • βœ… Develop custom functions for specialized data processing
  • βœ… Orchestrate complex workflows with proper error handling
  • βœ… Implement comprehensive data quality frameworks

πŸ† Project Achievements

Completion Status: 100% Core Complete βœ…

  • 8/8 Core datasets implemented with realistic data
  • 6/6 Priority SQL scripts covering basic to advanced operations
  • 2/2 Priority UDF examples for Java and Python
  • 1/1 Priority workflow with complete orchestration
  • Professional documentation with comprehensive guides
  • Data generation tools for scaling test environments

Ready for Production Use

This project is production-ready for learning, training, and development environments, providing everything needed for comprehensive DataWorks & MaxCompute education.


πŸ“ License

This project is open source and available under the MIT License.

πŸ™ Acknowledgments

  • Alibaba Cloud Documentation Team for technical references
  • DataWorks and MaxCompute engineering teams for platform capabilities
  • Open source community for best practices and patterns

Start your DataWorks & MaxCompute journey today! πŸš€

Follow the Getting Started Guide to begin learning with hands-on, realistic scenarios.

About

Practical DataWorks and MaxCompute learning project with sample data, SQL scripts, and ETL workflows

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published