Skip to content

reactivetype/pytorch-yolov3

 
 

Repository files navigation

pytorch-yolo3

Introduction

Pytorch implementation of YOLOv3. Tensorflow2.0 version can be found here

Quick Start

  1. Download yolov3.weights and darknet53.conv.74 from YOLO website.
  2. Download COCO dataset
  3. Modify the dataset root and weights root in the config file
python main_coco.py --resume load_yolov3 --do_test --net_size 608 --batch_size 8

Training

  1. run the following command to start training
python main_voc.py/main_coco.py --resume load_darknet --net_size 480 --batch_size 12

Visualization

The Tensorboard is origanized like TF-ObjectDection-API Ap of all categories

GT VS Prediction across time

Performance on VOC2007 Test(mAP)

Initial backbone weights train scales baseline data augmentation +multi test +flip
darknet53 480 0.532 0.738 0.753 0.769
darknet53 448,480,512 - 0.727 0.737 0.754
coco pretrained 448,480,512 - 0.817 0.834 0.845

Note: all experiments trained for 100 epochs with learning rate dropped 10 times at the 70 and 90 epoch.

Supported Attributes

  • Data agumentation
  • Multi-scale Training
  • Multi-scale Testing(including flip)
  • Focal loss
  • ....

TODO

  • Update VOC performance
  • Update COCO performance
  • Support distribute training
  • Support Custom dataset

Reference

gluon-cv

tf-eager-yolo3

keras-yolo3

stronger-yolo

yolo3-pytorch

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%