Pytorch implementation of YOLOv3. Tensorflow2.0 version can be found here
- Download yolov3.weights and darknet53.conv.74 from YOLO website.
- Download COCO dataset
- Modify the dataset root and weights root in the config file
python main_coco.py --resume load_yolov3 --do_test --net_size 608 --batch_size 8
- run the following command to start training
python main_voc.py/main_coco.py --resume load_darknet --net_size 480 --batch_size 12
The Tensorboard is origanized like TF-ObjectDection-API

| Initial backbone weights | train scales | baseline | data augmentation | +multi test | +flip |
|---|---|---|---|---|---|
| darknet53 | 480 | 0.532 | 0.738 | 0.753 | 0.769 |
| darknet53 | 448,480,512 | - | 0.727 | 0.737 | 0.754 |
| coco pretrained | 448,480,512 | - | 0.817 | 0.834 | 0.845 |
Note: all experiments trained for 100 epochs with learning rate dropped 10 times at the 70 and 90 epoch.
- Data agumentation
- Multi-scale Training
- Multi-scale Testing(including flip)
- Focal loss
- ....
- Update VOC performance
- Update COCO performance
- Support distribute training
- Support Custom dataset
