Skip to content

Awesome tutorials for beginners, intermediates and experts in data science :) !

Notifications You must be signed in to change notification settings

remijul/tutorial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

189 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tutorial

Awesome tutorials for beginners, intermediates and experts in data science :) !

A. Getting started with Python programming

The basics as a good starting point !

  1. Hello world
  2. Data types
  3. Data structures
  4. Strings formatting and operations
  5. Numerical operations
  6. Logical operations
  7. Conditions
  8. Loops
  9. Functions

Exercices :

B. Becoming expert with Python programming

More advanced tutorials ...

  1. Modules and packages()
  2. Lambda functions
  3. Comprehension lists
  4. POO
  5. The .apply() method from Pandas()
  6. Debug your code

C. Data science tutorials

  1. Data wrangling
  1. Web scraping
  1. Graphics & Dataviz
  1. Cartography :
  1. Text mining & NLP :

D. Data science use cases

Data Analysis

  1. Data analysis on diamonds dataset
  2. [Data analysis on FAO STAT data[FR]]

Machine Learning

  1. Supervised ML - Classification of Iris
  2. Supervised ML - Classification of Penguins - FR
  3. Supervised ML - Classification of Airline Passenger Satisfaction - Sentiment analysis

E. Machine learning tutorials and exercices

  1. Data Preprocessing for machine learning && Exercice - Preprocessing for machine learning
  2. Pipeline for machine learning && Exercice - Pipeline for machine learning
  3. Cross Validation & Grid Search for machine learning
  4. [Hyper-parameters tuning]
  5. Metrics for classification - Part 1 2-class && [Metrics for classification - Part 2 n-class]
  6. [Metrics for regression]
  7. [Feature importance]
  8. Supervised learning

8.1 Models for Regression :

8.2 Models for Classification :

  1. Unsupervised learning :
  1. [Comparison of ML models]

F. Exercices

G. Teaching - Evaluation

About

Awesome tutorials for beginners, intermediates and experts in data science :) !

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published