Skip to content

rickragv/Tensorflow-object-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 

Repository files navigation

Tensorflow-object-detection instruction

  1. Before running with a GPU, in addition to installing Docker, you will need: Up-to-date NVIDIA drivers for your system nvidia-docker: You can follow the installation instructions : https://github.com/NVIDIA/nvidia-docker#quick-start

  2. Docker Build

  3. RUN docker image. This docker can be run for training and evalutaion of model, by quickly setting environment variable - PROFILE to EVAL (for evaluation) and default is training.

    To run for training:

     docker run --runtime=nvidia \
     -e NVIDIA_VISIBLE_DEVICES=0 \ 
     -e PIPELINE_CONFIG=*.config \  
     -e NUM_CLONES=1 \  
     -it -p 8080:8080 \
     --mount type=bind,source={source_path},target=/root/models/research/training \
     tensorflow-object-detection 
    

    To run for evalutation:

     docker run --runtime =nvidia \
     -e NVIDIA_VISIBLE_DEVICES =0 \ 
     -e PIPELINE_CONFIG =*.config \  
     -e NUM_CLONES =1 \
      -e PROFILE = EVAL \
      -it -p 8080:8080 \
     --mount type=bind,source={source_path},target=/root/models/research/training \
     tensorflow-object-detection 
    

    Directory Structure for source_path source_path

       |—- pipeline.config
    
       ├── checkpoint
    
       ├── eval
    
       ├── pretrained_checkpoint
    
       └── tfrecord
    
             ├── test
    
             └── train
    

example: pipeline.config relative paths

1. fine_tune_checkpoint:"./training/pretrained_checkpoint/model.ckpt"
2. train_input_reader: {
		  tf_record_input_reader {
		    input_path: "./training/tfrecord/train/*.record
		  }

		  label_map_path: "./training/label_map.pbtxt"
		}
3. eval_input_reader: {
		  tf_record_input_reader {
		    input_path: "./training/tfrecord/test/*.record"
		  }

		  label_map_path: "./training/label_map.pbtxt"

		}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages