-
Before running with a GPU, in addition to installing Docker, you will need: Up-to-date NVIDIA drivers for your system nvidia-docker: You can follow the installation instructions : https://github.com/NVIDIA/nvidia-docker#quick-start
-
Docker Build
-
RUN docker image. This docker can be run for training and evalutaion of model, by quickly setting environment variable - PROFILE to EVAL (for evaluation) and default is training.
To run for training:
docker run --runtime=nvidia \ -e NVIDIA_VISIBLE_DEVICES=0 \ -e PIPELINE_CONFIG=*.config \ -e NUM_CLONES=1 \ -it -p 8080:8080 \ --mount type=bind,source={source_path},target=/root/models/research/training \ tensorflow-object-detectionTo run for evalutation:
docker run --runtime =nvidia \ -e NVIDIA_VISIBLE_DEVICES =0 \ -e PIPELINE_CONFIG =*.config \ -e NUM_CLONES =1 \ -e PROFILE = EVAL \ -it -p 8080:8080 \ --mount type=bind,source={source_path},target=/root/models/research/training \ tensorflow-object-detectionDirectory Structure for source_path source_path
|—- pipeline.config ├── checkpoint ├── eval ├── pretrained_checkpoint └── tfrecord ├── test └── train
example: pipeline.config relative paths
1. fine_tune_checkpoint:"./training/pretrained_checkpoint/model.ckpt"
2. train_input_reader: {
tf_record_input_reader {
input_path: "./training/tfrecord/train/*.record
}
label_map_path: "./training/label_map.pbtxt"
}
3. eval_input_reader: {
tf_record_input_reader {
input_path: "./training/tfrecord/test/*.record"
}
label_map_path: "./training/label_map.pbtxt"
}