-
Notifications
You must be signed in to change notification settings - Fork 1.4k
Closed
Description
Check duplicate issues.
- Checked for duplicates
Description
gtest-tmva-sofie-TestSofieModels is failing on alma8, alma10, ubuntu22, and ubuntu2404, as shown below:
864/2687 Test #439: gtest-tmva-sofie-TestSofieModels ..................................................................***Failed 30.62 sec
Running main() from ./googletest/src/gtest_main.cc
[==========] Running 14 tests from 1 test suite.
[----------] Global test environment set-up.
[----------] 14 tests from SOFIE
[ RUN ] SOFIE.Linear_B1
using batch-size = 1 input dim = 10 nlayers = 4
input data torch.Size([1, 10])
tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])
W1020 01:57:39.124000 78746 torch/onnx/_internal/exporter/_registration.py:107] torchvision is not installed. Skipping torchvision::nms
[torch.onnx] Obtain model graph for `Net([...]` with `torch.export.export(..., strict=False)`...
[torch.onnx] Obtain model graph for `Net([...]` with `torch.export.export(..., strict=False)`... ✅
[torch.onnx] Run decomposition...
[torch.onnx] Run decomposition... ✅
[torch.onnx] Translate the graph into ONNX...
[torch.onnx] Translate the graph into ONNX... ✅
output data : shape, torch.Size([1, 4])
tensor([[ 0.0202, -0.0144, 0.0183, -0.1695]], grad_fn=<AddmmBackward0>)
/github/home/ROOT-CI/build/tmva/sofie/test/LinearModelGenerator.py:148: UserWarning: Converting a tensor with requires_grad=True to a scalar may lead to unexpected behavior.
Consider using tensor.detach() first. (Triggered internally at /pytorch/torch/csrc/autograd/generated/python_variable_methods.cpp:836.)
f.write(str(float(yvec[i]))+" ")
executing python3 LinearModelGenerator.py 1 10 4
parsing file LinearModel_B1.onnx
generating model.....
writing model as header .....
output written in LinearModel_B1.hxx
doing inference.....(std::vector<float>) { inff, inff, inff, inff }
result inf reference 0.0201594
/github/home/ROOT-CI/src/tmva/sofie/test/TestSofieModels.cxx:97: Failure
The difference between result.at(i) and refValue[i] is inf, which exceeds 10 * std::numeric_limits<float>::epsilon(), where
result.at(i) evaluates to inf,
refValue[i] evaluates to 0.020159400999546051, and
10 * std::numeric_limits<float>::epsilon() evaluates to 1.1920928955078125e-06.
result inf reference -0.0144313
/github/home/ROOT-CI/src/tmva/sofie/test/TestSofieModels.cxx:97: Failure
The difference between result.at(i) and refValue[i] is inf, which exceeds 10 * std::numeric_limits<float>::epsilon(), where
result.at(i) evaluates to inf,
refValue[i] evaluates to -0.014431252144277096, and
10 * std::numeric_limits<float>::epsilon() evaluates to 1.1920928955078125e-06.
result inf reference 0.0182777
/github/home/ROOT-CI/src/tmva/sofie/test/TestSofieModels.cxx:97: Failure
The difference between result.at(i) and refValue[i] is inf, which exceeds 10 * std::numeric_limits<float>::epsilon(), where
result.at(i) evaluates to inf,
refValue[i] evaluates to 0.018277715891599655, and
10 * std::numeric_limits<float>::epsilon() evaluates to 1.1920928955078125e-06.
result inf reference -0.169499
/github/home/ROOT-CI/src/tmva/sofie/test/TestSofieModels.cxx:97: Failure
The difference between result.at(i) and refValue[i] is inf, which exceeds 10 * std::numeric_limits<float>::epsilon(), where
result.at(i) evaluates to inf,
refValue[i] evaluates to -0.16949871182441711, and
10 * std::numeric_limits<float>::epsilon() evaluates to 1.1920928955078125e-06.
[ FAILED ] SOFIE.Linear_B1 (6135 ms)
[ RUN ] SOFIE.Linear_B4
using batch-size = 4 input dim = 10 nlayers = 4
input data torch.Size([4, 10])
tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[2., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
[3., 3., 3., 3., 3., 3., 3., 3., 3., 3.],
[4., 4., 4., 4., 4., 4., 4., 4., 4., 4.]])
[torch.onnx] Obtain model graph for `Net([...]` with `torch.export.export(..., strict=False)`...
W1020 01:57:47.306000 78949 torch/onnx/_internal/exporter/_registration.py:107] torchvision is not installed. Skipping torchvision::nms
[torch.onnx] Obtain model graph for `Net([...]` with `torch.export.export(..., strict=False)`... ✅
[torch.onnx] Run decomposition...
[torch.onnx] Run decomposition... ✅
[torch.onnx] Translate the graph into ONNX...
[torch.onnx] Translate the graph into ONNX... ✅
output data : shape, torch.Size([4, 4])
tensor([[ 0.0210, 0.1184, 0.0405, 0.0845],
[-0.0021, 0.1561, -0.0039, 0.0571],
[-0.0206, 0.1899, -0.0541, 0.0284],
[-0.0396, 0.2219, -0.1040, -0.0017]], grad_fn=<AddmmBackward0>)
/github/home/ROOT-CI/build/tmva/sofie/test/LinearModelGenerator.py:148: UserWarning: Converting a tensor with requires_grad=True to a scalar may lead to unexpected behavior.
Consider using tensor.detach() first. (Triggered internally at /pytorch/torch/csrc/autograd/generated/python_variable_methods.cpp:836.)
f.write(str(float(yvec[i]))+" ")
executing python3 LinearModelGenerator.py 4 10 4
parsing file LinearModel_B4.onnx
generating model.....
writing model as header .....
output written in LinearModel_B4.hxx
unknown file: Failure
C++ exception with description "TMVA-SOFIE failed to read the values for tensor tensor_out3weight" thrown in the test body.
[ FAILED ] SOFIE.Linear_B4 (9577 ms)
[ RUN ] SOFIE.Conv2d_B1
using batch-size = 1 nchannels = 2 dim = 4 ngroups = 2 nlayers = 4
input data torch.Size([1, 2, 4, 4])
tensor([[[[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]],
[[-1., -1., -1., -1.],
[-1., -1., -1., -1.],
[-1., -1., -1., -1.],
[-1., -1., -1., -1.]]]])
Net(
(conv0): Conv2d(2, 4, kernel_size=(2, 2), stride=(1, 1), padding=(1, 1))
(conv1): Conv2d(4, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2)
(conv2): Conv2d(8, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(4, 1, kernel_size=(2, 2), stride=(2, 2))
)
W1020 01:57:57.015000 79134 torch/onnx/_internal/exporter/_registration.py:107] torchvision is not installed. Skipping torchvision::nms
[torch.onnx] Obtain model graph for `Net([...]` with `torch.export.export(..., strict=False)`...
[torch.onnx] Obtain model graph for `Net([...]` with `torch.export.export(..., strict=False)`... ✅
[torch.onnx] Run decomposition...
[torch.onnx] Run decomposition... ✅
[torch.onnx] Translate the graph into ONNX...
[torch.onnx] Translate the graph into ONNX... ✅
output data : shape, torch.Size([1, 1, 2, 2])
tensor([[[[-0.1113, -0.1142],
[-0.1172, -0.1270]]]], grad_fn=<ConvolutionBackward0>)
/github/home/ROOT-CI/build/tmva/sofie/test/Conv2dModelGenerator.py:163: UserWarning: Converting a tensor with requires_grad=True to a scalar may lead to unexpected behavior.
Consider using tensor.detach() first. (Triggered internally at /pytorch/torch/csrc/autograd/generated/python_variable_methods.cpp:836.)
f.write(str(float(yvec[i]))+" ")
executing python3 Conv2dModelGenerator.py 1 2 4 2 4
parsing file Conv2dModel_B1.onnx
generating model.....
writing model as header .....
output written in Conv2dModel_B1.hxx
unknown file: Failure
C++ exception with description "TMVA-SOFIE failed to read the values for tensor tensor_conv2weight" thrown in the test body.
[ FAILED ] SOFIE.Conv2d_B1 (8715 ms)
[ RUN ] SOFIE.Conv2d_B4
using batch-size = 4 nchannels = 2 dim = 4 ngroups = 2 nlayers = 4
input data torch.Size([4, 2, 4, 4])
tensor([[[[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]],
[[-1., -1., -1., -1.],
[-1., -1., -1., -1.],
[-1., -1., -1., -1.],
[-1., -1., -1., -1.]]],
[[[ 2., 2., 2., 2.],
[ 2., 2., 2., 2.],
[ 2., 2., 2., 2.],
[ 2., 2., 2., 2.]],
[[-2., -2., -2., -2.],
[-2., -2., -2., -2.],
[-2., -2., -2., -2.],
[-2., -2., -2., -2.]]],
[[[ 3., 3., 3., 3.],
[ 3., 3., 3., 3.],
[ 3., 3., 3., 3.],
[ 3., 3., 3., 3.]],
[[-3., -3., -3., -3.],
[-3., -3., -3., -3.],
[-3., -3., -3., -3.],
[-3., -3., -3., -3.]]],
[[[ 4., 4., 4., 4.],
[ 4., 4., 4., 4.],
[ 4., 4., 4., 4.],
[ 4., 4., 4., 4.]],
[[-4., -4., -4., -4.],
[-4., -4., -4., -4.],
[-4., -4., -4., -4.],
[-4., -4., -4., -4.]]]])
Net(
(conv0): Conv2d(2, 4, kernel_size=(2, 2), stride=(1, 1), padding=(1, 1))
(conv1): Conv2d(4, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2)
(conv2): Conv2d(8, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(4, 1, kernel_size=(2, 2), stride=(2, 2))
)
[torch.onnx] Obtain model graph for `Net([...]` with `torch.export.export(..., strict=False)`...
W1020 01:58:04.780000 79238 torch/onnx/_internal/exporter/_registration.py:107] torchvision is not installed. Skipping torchvision::nms
[torch.onnx] Obtain model graph for `Net([...]` with `torch.export.export(..., strict=False)`... ✅
[torch.onnx] Run decomposition...
[torch.onnx] Run decomposition... ✅
[torch.onnx] Translate the graph into ONNX...
[torch.onnx] Translate the graph into ONNX... ✅
output data : shape, torch.Size([4, 1, 2, 2])
tensor([[[[-0.2314, -0.2289],
[-0.2167, -0.2251]]],
[[[-0.2314, -0.2406],
[-0.2084, -0.2412]]],
[[[-0.2323, -0.2494],
[-0.2005, -0.2507]]],
[[[-0.2332, -0.2600],
[-0.1935, -0.2618]]]], grad_fn=<ConvolutionBackward0>)
/github/home/ROOT-CI/build/tmva/sofie/test/Conv2dModelGenerator.py:163: UserWarning: Converting a tensor with requires_grad=True to a scalar may lead to unexpected behavior.
Consider using tensor.detach() first. (Triggered internally at /pytorch/torch/csrc/autograd/generated/python_variable_methods.cpp:836.)
f.write(str(float(yvec[i]))+" ")
executing python3 Conv2dModelGenerator.py 4 2 4 2 4
parsing file Conv2dModel_B4.onnx
generating model.....
writing model as header .....
output written in Conv2dModel_B4.hxx
doing inference...../github/home/ROOT-CI/src/core/testsupport/src/TestSupport.cxx:79: Failure
Failed
Received unexpected diagnostic of severity 4000 at 'TUnixSystem::DispatchSignals' reading 'segmentation violation'.
Suppress those using ROOT/TestSupport.hxx
Generating stack trace...
0x00005611d713bdd6 in SOFIE_Conv2d_B4_Test::TestBody() + 0x66 from /github/home/ROOT-CI/build/tmva/sofie/test/TestSofieModels
0x00005611d71830ff in void testing::internal::HandleExceptionsInMethodIfSupported<testing::Test, void>(testing::Test*, void (testing::Test::*)(), char const*) + 0x8f from /github/home/ROOT-CI/build/tmva/sofie/test/TestSofieModels
0x00005611d71699d6 in testing::Test::Run() + 0xd6 from /github/home/ROOT-CI/build/tmva/sofie/test/TestSofieModels
0x00005611d7169b95 in testing::TestInfo::Run() + 0x195 from /github/home/ROOT-CI/build/tmva/sofie/test/TestSofieModels
0x00005611d7169d7f in testing::TestSuite::Run() + 0x1bf from /github/home/ROOT-CI/build/tmva/sofie/test/TestSofieModels
0x00005611d7177bec in testing::internal::UnitTestImpl::RunAllTests() + 0x36c from /github/home/ROOT-CI/build/tmva/sofie/test/TestSofieModels
0x00005611d71837d7 in bool testing::internal::HandleExceptionsInMethodIfSupported<testing::internal::UnitTestImpl, bool>(testing::internal::UnitTestImpl*, bool (testing::internal::UnitTestImpl::*)(), char const*) + 0x87 from /github/home/ROOT-CI/build/tmva/sofie/test/TestSofieModels
0x00005611d7169f78 in testing::UnitTest::Run() + 0x78 from /github/home/ROOT-CI/build/tmva/sofie/test/TestSofieModels
0x00005611d71357c4 in main + 0x44 from /github/home/ROOT-CI/build/tmva/sofie/test/TestSofieModels
0x00007fa76de461ca in <unknown> from /lib/x86_64-linux-gnu/libc.so.6
0x00007fa76de4628b in __libc_start_main + 0x8b from /lib/x86_64-linux-gnu/libc.so.6
0x00005611d7135bc5 in _start + 0x25 from /github/home/ROOT-CI/build/tmva/sofie/test/TestSofieModels
CMake Error at /github/home/ROOT-CI/src/cmake/modules/RootTestDriver.cmake:232 (message):
error code: 129
Reproducer
ctest -VV -C gtest-tmva-sofie-TestSofieModels
ROOT version
master (6.37.01) and v6-36-00-patches
Installation method
from source (in the CI)
Operating system
Linux (alma8, alma10, ubuntu22, and ubuntu2404)
Additional context
No response
Metadata
Metadata
Assignees
Type
Projects
Status
No status