Skip to content

Commit

Permalink
Add in a demo of camera capture with python tools.
Browse files Browse the repository at this point in the history
This is useful for showing off dropped messages with QOS
changes.

Signed-off-by: Chris Lalancette <clalancette@openrobotics.org>
  • Loading branch information
clalancette committed Jul 18, 2018
1 parent a528aa2 commit 4e95f14
Show file tree
Hide file tree
Showing 10 changed files with 653 additions and 0 deletions.
109 changes: 109 additions & 0 deletions image_tools_py/README
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
This is a demonstration of the Quality of Service (QoS) features of ROS 2 using Python.
There are two programs implemented here: cam2image_py, and showimage_py. Note that in
order for these programs to work, an OpenCV binding for Python3 must be available. As
of this writing (January 11, 2017), only OpenCV 3 or later supports Python3. Instructions
for compiling OpenCV3 for Python3 are available here:

http://stackoverflow.com/questions/20953273/install-opencv-for-python-3-3

The condensed rundown that works on Ubuntu16.04 and will install to /usr/local is:
$ sudo apt install python3 build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev python3.5-dev libpython3-dev python3-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
$ git clone https://github.com/opencv/opencv
$ cd opencv
$ git checkout 3.2.0
$ mkdir release
$ cd release
$ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..
$ make -j8
$ sudo make install

CAM2IMAGE_PY
------------
This is a Python program that will take data from an attached camera, and publish the
data to a topic called "image", with the type sensor_msgs::msg::Image. If a camera
isn't available, this program can also generate a default image and smoothly "move"
it across the screen, simulating motion. The usage output from the program looks like
this:

usage: cam2image_py.py [-h] [-b] [-d QUEUE_DEPTH] [-f FREQUENCY] [-k {0,1}]
[-r {0,1}] [-s {0,1}] [-x WIDTH] [-y HEIGHT]

optional arguments:
-h, --help show this help message and exit
-b, --burger Produce images of burgers rather than connecting to a
camera (default: False)
-d QUEUE_DEPTH, --depth QUEUE_DEPTH
Queue depth (default: 10)
-f FREQUENCY, --frequency FREQUENCY
Publish frequency in Hz (default: 30)
-k {0,1}, --keep {0,1}
History QoS setting, 0 - keep last sample, 1 - keep
all the samples (default: 1)
-r {0,1}, --reliability {0,1}
Reliability QoS setting, 0 - best effort, 1 - reliable
(default: 1)
-s {0,1}, --show {0,1}
Show the camera stream (default: 0)
-x WIDTH, --width WIDTH
Image width (default: 320)
-y HEIGHT, --height HEIGHT
Image height (default: 240)

The -d, -k, and -r parameters control various aspects of the QoS implementation, and
are the most interesting to play with when testing out QoS.

Note that this program also subscribes to a topic called "flip_image" of type
std_msgs::msg::Bool. If flip_image is set to False, the data coming out of the camera
is sent as usual. If flip_image is set to True, the data coming out of the camera is
flipped around the Y axis.

If the -s parameter is set to 1, then this program opens up a (local) window to show
the images that are being published. However, these images are *not* coming in through
the ROS 2 pub/sub model, so this window cannot show off the QoS parameters (it is mostly
useful for debugging). See SHOWIMAGE_PY below for a program that can show QoS over the
pub/sub model.

SHOWIMAGE_PY
------------
This is a Python program that subscribes to the "image" topic, waiting for data. As
new data comes in, this program accepts the data and can optionally render it to
the screen. The usage output from the program looks like this:

usage: showimage_py.py [-h] [-d QUEUE_DEPTH] [-k {0,1}] [-r {0,1}] [-s {0,1}]

optional arguments:
-h, --help show this help message and exit
-d QUEUE_DEPTH, --depth QUEUE_DEPTH
Queue depth (default: 10)
-k {0,1}, --keep {0,1}
History QoS setting, 0 - keep last sample, 1 - keep
all the samples (default: 1)
-r {0,1}, --reliability {0,1}
Reliability QoS setting, 0 - best effort, 1 - reliable
(default: 1)
-s {0,1}, --show {0,1}
Show the camera stream (default: 0)

The -d, -k, and -r parameters control various aspects of the QoS implementation, and
are the most interesting to play with when testing out QoS.

If the -s parameter is set to 1, then this program opens up a window to show the images
that have been received over the ROS 2 pub/sub model. This program should be used
in conjunction with CAM2IMAGE_PY to demonstrate the ROS 2 QoS capabilities over lossy/slow
links.

EXAMPLE USAGE
-------------
To use the above programs, you would run them something like the following:

# In the first terminal, run the data publisher. This will connect to the 1st camera
# available, and print out "Publishing image #" for each image it publishes.
$ python3 cam2image_py.py

# In a second terminal, run the data subscriber. This will subscribe to the "image"
# topic and render any frames it receives.
$ python3 showimage_py.py -s 1

# If you don't have a local camera, you can use the -b parameter to generate data on
# the fly rather than get data from a camera:
$ python3 cam2image_py.py -b
109 changes: 109 additions & 0 deletions image_tools_py/burger_py.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
# Copyright 2017 Open Source Robotics Foundation, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# System imports
import base64
import random

# OpenCV
import cv2

# Numpy
import numpy

# THE FOLLOWING IS A BURGER IN BASE64. RESPECT IT

BURGER_BASE64 = 'iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAYAAACqaXHeAAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAB3RJTUUH4AUYFx8cR++mBgAAABl0RVh0Q29tbWVudABDcmVhdGVkIHdpdGggR0lNUFeBDhcAABCPSURBVHja7Vt3UFTX235YtrC7FCkioKyKBWNBo6Aw1iEYx5IYQwxGY4xoLAQdRUej/qyDYxRiA0siYyZGoyFBUYwaRQWCJhAMBHtBBAxIF5Zl2WV3n++Pb7jjBmyA/vy+5J05A/ecc0957nnPW9cCAPEPJhH+4fQvAP8C8A8n8UudTCyGTCZ7bDtJmEwm6PV6mEym/x8AeHp6YsiQIRg4cCBUKhWsrKxA8qkA6HQ6PHz4EEVFRcjLy8Pt27dx5coVlJaWtvoa2dqlZ8+ejIiIYE5ODquqqlhXV8fmksFgoE6nY01NDSsrK5mTk8OdO3dy2LBhrbJWi9bQA0QiEezs7DB58mSEhYXBw8NDaDMYDNDr9dDr9dBqtcjJyUFubi6Ki4tRXV2Nuro6kIRMJoO1tTUcHR3h4uIClUoFV1dXSCQSiMVioUgkEmFsjUaDXbt2YefOnbh//z7q6+ufe+0tBqBLly6YMmUKFixYAHt7e6H+1q1buHnzJtLS0pCeno6srKwnHl8XFxc4OTlBp9Ph7t27MBqNAAAbGxu4uLigS5cu8PT0hLe3N3r27IlevXqZ3ScxMTHYs2cP0tPTXx4LhISE8MaNG2ZHNjY2lhMnTmS3bt0e+16/fv24cuVK9uvXT6jr06cPL168yKNHj3Lz5s1CvUwm4+LFi7lkyRL6+PgQAF1dXRkQEMAvvviCDx48EOYuKirimjVrnncfzeAbCwtGR0eb8fa+ffvYuXNnWllZmfUVi8VmdQ4ODkxPT+eWLVsYHx9v1rdt27YcMWIEnZ2dzeYaO3YsN2zYwLi4uEZjOzo6ct68eVSr1STJ+vp6fvnllxSJRC8GALFYzPDwcOGCSkpKooeHR6N+MpmMS5YsYXJyMjMzM6lSqQiAEomE7733HmfMmEG5XN7oPblczhMnTlCr1TI4OLhJ8Jtal0ql4rVr14QPMn369BcDwLRp00iSOp2On3322WP7BQcHMzIykqGhoZwxY0ajdnd3dw4ePJg+Pj60tLQU6hUKBVetWsVNmzZx8ODBQn2bNm04fPhwDh482OyEPFpsbGx46dIlkuTVq1dpbW3dugB07NhROPbLli0T6jt37sxVq1axe/fuQp1SqaSvry87dOjQaJyJEycyOTmZ586d47lz55qcS6FQmD0vX76c2dnZjImJobu7+2PX2L17dz58+JAkOWnSpNYF4KeffiJJnj592uz4zp49m3PmzGFKSgo7depk9s7YsWMZFRXF3r17C3WjRo1ifHw8p06d+qxfiTY2NnR3d6eNjc0T+4lEIq5Zs4YkmZub23oA9OnThzU1NaypqeHIkSPN2rp27cqEhAQmJSXRyclJ4NXjx4/zyJEjTE5O5tixY584/uDBg3nkyBEmJCRw7dq17Ny5c7Ol09ChQ1lVVUWSZsC3CIBt27aRJH/77bdn6t+rVy8eOHCAW7duFcTXoxfdo892dnaMj4/nnj17OGbMGM6fP592dnbNBkClUvHPP/9sxKrNBsDNzY1//PEHSfKDDz5okeo5a9Ysbt26lcHBwZRIJGYisHfv3uzSpUuL1Vt7e3umpqaSJA8ePNhyAPz9/VlTU0OSzyNfmyx+fn7MzMxkRkYG7e3t+SJsEWtra54/f54kH3vJCmL9WVTFDh06QKlUIiMjo8Vm6q+//ooRI0ZAIpGgsrLyhVmhFhYWAICqqqqWmcMWFhZwdXUFAJw4caJVFve0RbWG38HS0hIAkJ2d3TKPkEgkgq2tLQDg2rVr/ye8PFZWVrCysgIAZGZmttwl1mCCNlhorzq1adMGdnZ2AIC0tLSWA/Cy3FOtRV26dEGnTp0AAAMGDIBIJGo+ACRRW1sr/P/KOznFYkyfPl04tQkJCYiKioJSqWweACaTCTU1NQAAqVT6ygMQFhaGwMBAhIeHY+LEiSgsLERISAgCAwOb5xD55JNPBAOooKDghcjt1irr16+nyWRifHw8ZTIZAbCoqIgkuWDBgudThKytrRkbG0uSNBqNLCgoIEmeOHHildq0SCSiSqViQkICSTI9PV3YPADeuXOHJDllypRnB8DDw4OZmZkkyerqan7++ee0tLQU7IFjx47R39+/kcn6MotcLqevry/Dw8NZW1tLjUbDmJgYM/UaAJ2dnalWq7l9+3aKxeKnAyCVSrljxw6SZGVlJf39/c3QXrt2LUmytraW58+f54oVK+jp6fnCN2xpacm+ffty2rRp3LZtG8+dO0eNRkOSjImJoa+vb6N3QkNDeebMGep0OkZHRzcCp0kA2rRpI/DNwIEDBTeWt7e3YOYGBATw/v37gltMrVbz0qVLDAsLY/v27Vtlw3369OHMmTMZExPDK1eusLy8nNXV1dTr9SRJvV7PLVu2sEOHDk1+2dmzZwsAkeTGjRufLS7g5OSE0tJS6HQ6nD59Gt27d4enpycA4OHDhxg6dCiuXLkCAJgzZw4WLlwINzc3WFlZQSz+X826pKQESUlJyMvLe6wOQVLQ1y0tLeHk5IROnTqhR48ecHFxaSSJ6urqoNfrkZWVhZiYGBw8ePCxY48cORJxcXGoq6tDaWkpevbsCQA4c+YMgoKCzGyQRgA4ODigpKRE0KX/TjqdDosWLUJSUhLUajUkEglsbW3h5+cHLy8vtGvXDnZ2dnBwcIC1tTUUCgWsrKwglUohlUohFouFjRuNRuh0OtTV1UGr1aK2thYajQYajQZarRZarRZqtRo3btzA77//jtTUVEEkW1paCoA3AGpnZ4dhw4Zhx44d0Gq1GDNmDO7cuYPdu3fjww8/hFQqRVFREaZOnYqzZ882DYBYLMbs2bMRFhaGv/76C2q1GmPGjAEA5OfnQ6VSAQAKCgqg0+kglUrxzTffYNWqVWa6uK2tLRQKRSMALC0tIRKJYGFhAYPBIADQ8LcBDK1Wi7q6uiY/wvvvv48ZM2YIQD4KwKBBg5CVlYWgoCDcunVLaP/444+xc+dOyOVypKenY+zYsSgrK2taD7C0tKS1tTVdXV1ZXFxMkoyIiGBkZKTAU2VlZayvr38qj7V2GTBgwBNjiSdPnmzkZ5RKpdy/fz+NRiNJ8sKFC7S1tX2yHuDg4MCcnByS5KFDhwiA8+fPF5yij960JSUlJMlFixa1SJ5LJBJaWVlRLpdToVBQoVBQLpebOWEWLVok6CZVVVWsqqpidXW1AMDatWvNxnVxceHZs2dJkiaTiZcvXzbzVDfpD2jXrh3i4uLg4eGBQ4cO4aOPPjKzrLy9vTF37lykpqYiOjoa0dHROHDgACIjI6FQKLBjxw5UVFQ8UWVVKpXo2rUr3Nzc4OLiAnd3d7Rt2xb29vZQKpWQyWQQi8VQq9XIzMxEYWEhDAYDhg4dKpi5kyZNgo+PD6KiooRL1dvbW5hj3Lhx2LVrFzp06ACNRoP9+/cjNDQUBoPh8aqwlZUVExMTSZLbt2+nVCo1ay8sLCRJ1tXVMS8vj3v37uXMmTO5fPly/vLLLyTJw4cP88cff+Tu3bu5efNmrlixgm5ubkJkafHixTx//jzz8vLM2Oh56M6dO/z000+FQEgDNfgaHw3d3bx5k+PGjXs2TbDBmbhx48Ym5evo0aPNJjQajdTpdNRoNNTpdDSZTIL/sOHYGQwGlpeXMyoqivfv32/2pv9ODTrBo3OJxWLu37/fLFj7CL8/GYBTp04JAcaUlBSGhISwffv2tLa2NgtfLViwwGyTrwrNmjWLGzZsEJ6vXr36fIGR7777rsmB09PTGR4eznHjxgnhLy8vL0ZFRTErK+u/vvFLly5x6tSp/M9//iOo8OXl5SRp9uGeCoBSqWRgYCCjoqKYnZ3d5GS3bt3i0aNHGRYWxu7du9Pe3p7Lli0zi9O/DLp27Rp37drFd999l05OTpw7dy6NRiONRiMnTJjAH374gSQZEBDw/HEBsVhMhUJBb29vgSVOnz7NlJQUQeQYDAZWV1czJyeHERER7NmzJz09Pblw4UKmpKS06mb1ej0TExO5evVq+vv7s23btrS1tRUuaH9/fyEU1hC42bRpE0kyPDy8+YERkUgkbPbReODbb7/NsrKyRgtNSkriO++8Q5lMRplMRm9vb4aGhvLrr7/mpUuXWFxczPLyclZWVgqlvLycZWVlLC0t5f3793n58mUmJSUxNjaW69ato5+f31OjVnl5eY2cHitXrqTJZOLx48ebHxgxmUwgKRgrDXTq1ClkZWXhjTfegF6vR0JCAhwdHWEymbBnzx44ODggLS0NSUlJuHjxIs6ePYs7d+4ISUxt2rSBXC6HwWAQ9P/mkLW1NQ4fPgyVSoXIyEhs3brVzDNsYWEBuVzeshyh69evkyQ3bdpkdqGMGjWKNTU1NJlMXLp0qRDMfO2111hcXMy9e/cKcfoHDx4wPT2d33//PcPCwjho0KBWUYvj4uIEUff3gGt8fDxJ8ttvv21ZbLDBOXLv3r1GOra7uzvT0tIEkbN582bGx8ezvLycnp6e/Pnnn5vkZ7VazZKSEh47dozBwcFCSP15yrJly2g0Gpmdnd1IWevRowdv375Nkpw3b17LAOjXr5+ZnG2qz9y5c1lQUMC6urpmKzm3bt3ixo0b6efnR1tbW8rl8sfmA/Xv35+FhYVUq9VUKpWN2hvsBZJ0dXVtWaKkVCrFoUOHMGHCBBgMBvTv3x+XL19u0h/fv39/eHl5YeTIkejatStsbW0hkUhgYWEBo9GI+vp6aLVaVFVVIS8vDwqFAt26dUO3bt3MeLW6uhrJyclISUlBdnY2cnNzkZOTIzhADh48iEmTJmHkyJFITEw0W4ePjw8SExNha2uLY8eOYfz48S3PExwyZAgrKioEvfpZfIBubm7s0aMHvby82LdvX/bu3Zuenp5UqVRmaS4qlYoBAQFcunQpExMTaTKZzE6GTqfj9evXefLkSa5bt46hoaEkyVWrVjWa09fXV5AIarXaLGepxRkikZGRwuKuXr36rIM/lzmsVCrp7OzMoKAgnjhx4rF5w6dOnWp06YWEhAgfiWSTmWktTpI6d+6cMEF5eTkDAgJeuGs8MDCQR44cYUlJCWtra5mfny/wtY2NDceMGSO48ElSo9Fw9erVLy5TdN++fWYZoufPn2dwcDD79u1rFpB4ESUgIIBvvfUW/fz8uH79eubm5grrqK2tZWpqKoOCgl58quzo0aPNTE6SzM/P55kzZxgREcHx48ezXbt2rbZxe3t7BgYGMjo6mhcuXDCzRCsqKrht2zaOGjXqqSl0rZouL5PJ0LZtW8yfPx8hISFC9NVkMkGn00Gv1+Phw4fIyMhAdnY2cnJy8ODBAxQWFuLu3bvQ6XSPHdvR0RGDBg3C0KFD8eabb6Jr166QSCRmkiIjIwMRERE4deoUtFpts1LlWyVdvoEmT56MpUuXwsPDAzKZzCyvvymqr6/HvXv3UFpaivr6eiiVSjg7Owte50ep4fcGpaWliI2NxVdffYW7d++2Ti5RawHQQK+//jqGDx8Ob29vdOzYES4uLnB2dhbSbJ4lHF9eXo6ysjI8ePAA+fn5SEtLQ0pKCq5evdr6yVStDcCjZG9vLwDg4OAAZ2dnAQyZTCb8Pkij0aCyshKlpaWoqqpCRUUFSktLUVRUJCRnvLBsshcJwOOSrv6esmIymf5raTgvHYBXjf795ei/APzD6X8AnLiHel4uyPcAAAAASUVORK5CYII=' # noqa


class Burger(object):

def __init__(self):
burger_png = base64.b64decode(BURGER_BASE64)
np_img = numpy.fromstring(burger_png, dtype=numpy.uint8)
self.burger_template = cv2.imdecode(np_img, cv2.IMREAD_COLOR)

# We flood fill the burger template with "1,1,1" (BGR) so that we can
# remove the borders during rendering.
h, w = self.burger_template.shape[:2]
mask = numpy.zeros((h + 2, w + 2), numpy.uint8)
cv2.floodFill(self.burger_template, mask, (1, 1), (1, 1, 1))

random.seed()

self.width = 0
self.height = 0
self.num_burgers = 0
self.burger_list = []

def render_burger(self, width, height):
# The basic idea here is to render a number of burgers into a OpenCV mat,
# moving them on each successful iteration. So when the requested
# resolution changes (this includes the very first time we are called),
# we generate a random number of burgers, at random starting locations,
# moving at random speeds, and store that list of burgers in the object.
# We then render the burgers onto the mat and return it. On subsequent
# render_burger() method calls, we keep the same list of burgers from
# before, but move them according to their X and Y speed, "bouncing" them
# off of the side of the mat if they run into it.
class OneBurger(object):

def __init__(self, x, y, x_inc, y_inc):
self.x = x
self.y = y
self.x_inc = x_inc
self.y_inc = y_inc

if self.width != width or self.height != height:
num_burgers = random.randrange(2, 10)
width_max = width - self.burger_template.shape[1] - 1
height_max = height - self.burger_template.shape[0] - 1
for b in range(0, num_burgers):
x = random.randrange(0, width_max)
y = random.randrange(0, height_max)
x_inc = random.randrange(1, 3)
y_inc = random.randrange(1, 3)
self.burger_list.append(OneBurger(x, y, x_inc, y_inc))
self.width = width
self.height = height

# We want an OpenCV Mat with CV_8UC3, which is 3 channels
burger_buf = numpy.zeros((height, width, 3), numpy.uint8)

# TODO(clalancette): This is the slow way to do this, in that we iterate
# over every pixel by hand, looking for the flood fill and thus whether
# we should render that pixel. However, I was not able to figure out the
# OpenCV python calls to do this in a nicer way, so we leave this for now.
for b in self.burger_list:
for y in range(0, self.burger_template.shape[0]):
for x in range(0, self.burger_template.shape[1]):
bitem = self.burger_template.item(y, x, 0)
gitem = self.burger_template.item(y, x, 1)
ritem = self.burger_template.item(y, x, 2)
if bitem != 1 or gitem != 1 or ritem != 1:
burger_buf.itemset((b.y + y, b.x + x, 0), bitem)
burger_buf.itemset((b.y + y, b.x + x, 1), gitem)
burger_buf.itemset((b.y + y, b.x + x, 2), ritem)
b.x += b.x_inc
b.y += b.y_inc

# Bounce if needed
if b.x < 0 or b.x > (width - self.burger_template.shape[1] - 1):
b.x_inc *= -1
b.x += 2 * b.x_inc
if b.y < 0 or b.y > (height - self.burger_template.shape[0] - 1):
b.y_inc *= -1
b.y += 2 * b.y_inc

return burger_buf
Loading

0 comments on commit 4e95f14

Please sign in to comment.