Skip to content

[CVPR 2025] Harnessing Frequency Spectrum Insights for Image Copyright Protection Against Diffusion Models

Notifications You must be signed in to change notification settings

sccsok/CoprGuard

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 Harnessing Frequency Spectrum Insights for Image Copyright Protection Against Diffusion Models

GitHub Repo stars GitHub forks License Python PyTorch

📌 Paper: Harnessing Frequency Spectrum Insights for Image Copyright Protection Against Diffusion Model
📖 Conference: CVPR 2025

Teaser Image

📂 Project Structure

Dataset Preparation

CoprGuard 
└── Source/ 
    ├── FFHQ/ 
    ├── CelebA-HQ/ 
    ├── BigGAN/ 
    ├── ... 
    └── Vggface/ 
└── HiNet/ 
    ├── FFHQ/ 
    ├── CelebA-HQ/ 
    ├── BigGAN/ 
    ├── ... 
    └── Vggface/ 
└── Generated/ 
    ├── FFHQ_DDIM/ 
    ├── BigGAN_DDIM/ 
    ├── ... 
    └── FFHQ_HiNet_DDIM/

🚀 Installation

# Clone the repository
git https://github.com/sccsok/CoprGuard.git
cd your-repo

# Create a virtual environment (optional) & install dependencies
conda env create -f environment.yml

🏋️‍♂️ Training & Evaluation

🖼️ Image Watermarking

  • Watermarking

    Download the pretrained HiNet and put it in ~/CoprGuard/watermark/ckpt.

    Watermarking training images:

    # For unconditional training images
    python wm.py --root_dir <> --watermark_path <> --save_dir <>
  • Generate Figure 6

    Compute consine similarity scores:

    python get_cos.py

    Plot cosine similarity distribution:

    python plt.py

📌Unconditional Training & Evaluation

  • Prepare Dataset
    Please prepare the training dataset according to the Dataset Preparation format.

  • DDPM Train

    Run the training scripts under ddim/scripts:

    cd ~/CoprGuard/ddim
    python scripts/xxx.py
  • Image Sampling

    Use the DDPM or DDIM scheduler for image sampling:

    python ddim/scripts/inference.py
  • Classifier-Free Training

    The ddim folder can be easily modified to support Classifier-Free Guidance. You can also refer to the following repository: classifier-free-diffusion-guidance-Pytorch

📊 Generate Figures

  • Generate Figure 1 & Figure 2 & Figure 10

    cd ~/CoprGuard/frequence
    python frequency_analysis.py ~/CoprGuard/Source $WORKDIR/output <fft_hp/dct/...> --img-dirs <FFHQ BIgGAN ProGAN ImageNet> --log --vmin 1e-5 --vmax 1e-1
    python frequency_analysis.py ~/CoprGuard/Generated $WORKDIR/output <fft_hp/dct/...> --img-dirs <FFHQ BIgGAN ProGAN ImageNet> ImageNet_DDIM --log --vmin 1e-5 --vmax 1e-1
  • Generate Table 1

    cd ~/CoprGuard/frequence
    python get_cos.py --type <fft/dct/...> --models1 <[FFHQ, xxx, ...]> --models2 <[FFHQ_DDIM, xxx, ...]> 
  • Generate Figure 3

    cd ~/CoprGuard/frequence
    get_rapsd.ipynb
  • Generate Table 3

    cd ~/CoprGuard/watermark
    python similarity_compute.py --mode folder --folder <> --watermark <> --resize 128 128

📜 Citation

If you find our work useful, please consider citing:

@inproceedings{liu2025harnessing,
  title={Harnessing Frequency Spectrum Insights for Image Copyright Protection Against Diffusion Models},
  author={Liu, Zhenguang and Shuai, Chao and Fan, Shaojing and Dong, Ziping and Hu, Jinwu and Ba, Zhongjie and Ren, Kui},
  booktitle={Proceedings of the Computer Vision and Pattern Recognition Conference},
  pages={18653--18662},
  year={2025}
}

🙏 Acknowledgement

Our implementation benefits from the following open-source projects:

We sincerely thank the authors for their great work.


About

[CVPR 2025] Harnessing Frequency Spectrum Insights for Image Copyright Protection Against Diffusion Models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published