Skip to content

MCP server providing semantic search over 23 authoritative incident response knowledge sources

License

Notifications You must be signed in to change notification settings

scriptedstatement/forensic-rag-mcp

Repository files navigation

RAG-MCP: Incident Response Knowledge Server

MCP server providing semantic search over incident response knowledge from 23 authoritative security sources.

Installation Options

Option A: As Part of Claude-IR (Recommended)

This MCP is designed as a component of the Claude-IR AI-assisted incident response workstation.

git clone https://github.com/scriptedstatement/claude-ir.git
cd claude-ir
./setup.sh
claude

Benefits of Claude-IR installation:

  • Guided setup with component selection
  • Pre-configured MCP integration
  • Works alongside windows-triage-mcp (file validation) and opencti-mcp (threat intel)
  • Forensic discipline rules and investigation workflows

Option B: Standalone Installation

Use standalone when you only need RAG search without the full IR workstation.

git clone https://github.com/scriptedstatement/forensic-rag-mcp.git
cd forensic-rag-mcp

# Create virtual environment
python3 -m venv .venv
source .venv/bin/activate

# Install dependencies
pip install -e .

# Build the index (fetches online sources, ~5 minutes first time)
python -m rag_mcp.build

# Check status
python -m rag_mcp.status

# Run MCP server (for Claude Code integration)
python -m rag_mcp.server

For detailed setup options (online sources vs. custom content): See SETUP.md

Features

  • 23 Online Sources: Auto-synced from authoritative security repositories
  • Semantic Search: BGE embeddings with ChromaDB vector store
  • MCP Integration: Tools for Claude Code (search, list_sources, get_stats)
  • User Documents: Add your own knowledge via watched folder or one-time ingest
  • Incremental Updates: Fast refresh without full rebuild
  • Filesystem Safety: Sentinel-based deletion guards prevent accidental data loss
  • Network Hardening: HTTPS-only, size limits, retry with backoff, SSRF protection
  • Exact Source Filtering: Deterministic source_ids filter for reliable results

Online Sources

Source Description Records
sigma SigmaHQ Detection Rules ~3,100
mitre_attack MITRE ATT&CK (techniques, groups, malware, campaigns, mitigations) ~2,100
atomic Atomic Red Team Tests ~1,800
elastic Elastic Detection Rules ~1,500
cisa_kev CISA Known Exploited Vulnerabilities ~1,500
capec MITRE CAPEC Attack Patterns ~1,500
splunk_security Splunk Security Content ~1,000
kape KAPE Targets & Modules ~800
forensic_artifacts ForensicArtifacts Definitions ~700
hijacklibs DLL Hijacking Database ~600
loldrivers LOLDrivers Vulnerable Driver Database ~500
mitre_d3fend MITRE D3FEND Countermeasures ~490
gtfobins GTFOBins (Linux) ~450
velociraptor Velociraptor Artifacts ~300
lolbas LOLBAS Project ~130
mitre_car MITRE CAR Analytics ~100
stratus_red_team Cloud Attack Techniques ~80
mbc MITRE MBC Malware Behavior Catalog ~650
mitre_atlas MITRE ATLAS AI/ML Attack Framework ~50
mitre_engage MITRE Engage Adversary Engagement ~45
chainsaw Chainsaw Forensic Detection Rules ~110
hayabusa Hayabusa Built-in Detection Rules ~190
forensic_clarifications Authoritative Forensic Artifact Clarifications 5

Commands

Build Index

# Full build (fetch all sources)
python -m rag_mcp.build

# Use cached sources only (offline mode)
python -m rag_mcp.build --skip-online

# Force re-fetch all sources
python -m rag_mcp.build --force-fetch

# Preview what would be built
python -m rag_mcp.build --dry-run

Refresh Index

# Check for updates and apply
python -m rag_mcp.refresh

# Check only (don't apply)
python -m rag_mcp.refresh --check-only

# Refresh specific source
python -m rag_mcp.refresh --source sigma

Check Status

# Show status
python -m rag_mcp.status

# JSON output
python -m rag_mcp.status --json

# Skip update checks (faster)
python -m rag_mcp.status --no-check

Bundled Reference Content

The knowledge/ folder ships with JSONL extractions from two reference sources, included with permission:

Source Original Location
SANS Posters https://www.sans.org/posters
Applied Incident Response https://www.appliedincidentresponse.com/resources

These are indexed automatically during rag_mcp.build. To build without bundled content, use --no-bundled.

User Documents

Watched Documents (knowledge/ folder)

Place files in knowledge/ - they're automatically indexed on build/refresh:

knowledge/
├── my-playbook.md      # Markdown
├── ioc-list.txt        # Plain text
└── detections.jsonl    # JSONL records

Supported formats: .txt, .md, .json, .jsonl

One-Time Ingestion

For sensitive documents you don't want to keep on disk:

# Ingest with friendly name
python -m rag_mcp.ingest /path/to/doc.txt --name "my-doc"

# List ingested documents
python -m rag_mcp.ingest --list

# Remove specific document
python -m rag_mcp.ingest --remove "my-doc"

# Remove all ingested
python -m rag_mcp.ingest --remove-all

MCP Tools

When running as MCP server, exposes these tools:

Tool Description
search Semantic search with optional filters
list_sources List available knowledge sources
get_stats Get index statistics

Search Filters

# Filter by source
search(query="credential dumping", source="sigma")

# Filter by MITRE technique
search(query="persistence", technique="T1053")

# Filter by platform
search(query="privilege escalation", platform="windows")

MCP Configuration

Add to your MCP configuration (e.g., .claude/mcp.json):

{
  "mcpServers": {
    "rag-knowledge": {
      "command": "/path/to/forensic-rag-mcp/.venv/bin/python",
      "args": ["-m", "rag_mcp.server"],
      "cwd": "/path/to/forensic-rag-mcp",
      "env": {
        "PYTHONPATH": "/path/to/forensic-rag-mcp/src"
      }
    }
  }
}

Configuration

Settings are loaded via Config dataclass (config.py) with an explicit validate() method and global singleton caching in get_config(). Set RAG_LOG_FORMAT=json for structured JSON logging.

Variable Default Description
RAG_INDEX_DIR ./data ChromaDB location
RAG_KNOWLEDGE_DIR ./knowledge User documents
RAG_MODEL_NAME BAAI/bge-base-en-v1.5 Embedding model
GITHUB_TOKEN (optional) Higher API rate limits (see Security section)
RAG_MAX_DOWNLOAD_BYTES 62914560 (60MB) Maximum download size for network fetches
RAG_ALLOW_HTTP false Allow HTTP (not recommended; HTTPS enforced by default)
RAG_FETCH_MAX_RETRIES 3 Max retries for transient network failures
RAG_MAX_TOP_K 50 Maximum top_k for queries
RAG_MAX_QUERY_LENGTH 1000 Maximum query string length
RAG_LOG_FORMAT text Log format: "text" or "json"

Project Structure

rag-mcp/
├── src/rag_mcp/
│   ├── server.py      # MCP server
│   ├── index.py       # Search engine wrapper
│   ├── sources.py     # Online source management (23 sources)
│   ├── ingest.py      # User document processing
│   ├── build.py       # Full index builder
│   ├── refresh.py     # Incremental updates
│   ├── status.py      # Status reporting
│   ├── config.py      # Centralized configuration management
│   ├── fs_safety.py   # Filesystem safety guardrails
│   ├── constants.py   # Project-wide constants
│   └── utils.py       # Shared utilities
├── data/              # Built index (gitignored, users rebuild)
│   ├── chroma/        # ChromaDB vector store
│   ├── sources/       # Cached online source JSONL
│   └── *.json         # State files
├── knowledge/         # User documents - .txt, .md, .json, .jsonl (watched folder)
└── tests/             # Test suite

Score Interpretation

Score Quality Action
0.85+ Excellent High confidence match
0.75-0.84 Good Relevant result
0.65-0.74 Fair May be tangential
< 0.65 Weak Likely not relevant

Query Analysis and Tuning

The system includes tools for monitoring query quality and tuning thresholds based on actual usage patterns.

Logging Setup

Query logging is OFF by default for privacy. Query text is logged verbatim, which may include sensitive search terms. Only enable logging if you understand the privacy implications.

Privacy Considerations:

  • Query logs contain the exact text users search for
  • In regulated environments (HIPAA, SOX, etc.), consider encrypting log files at rest
  • Ensure log file permissions restrict access appropriately

To enable query logging, you must explicitly add handlers:

# In your logging configuration
import logging

# Create handlers FIRST
metrics_handler = logging.FileHandler("logs/query_metrics.log")
attention_handler = logging.FileHandler("logs/attention.log")

# Get loggers and add handlers (this enables logging)
metrics_logger = logging.getLogger("rag_mcp.query_metrics")
metrics_logger.setLevel(logging.INFO)
metrics_logger.addHandler(metrics_handler)
metrics_logger.propagate = True  # Enable propagation if you want console output too

attention_logger = logging.getLogger("rag_mcp.attention")
attention_logger.setLevel(logging.WARNING)
attention_logger.addHandler(attention_handler)
attention_logger.propagate = True

Analyze and Tune

Run the analysis tool periodically to review query performance and adjust thresholds:

# Full interactive workflow (analyze, recommend, approve)
python -m rag_mcp.analyze_queries

# Just view report without making changes
python -m rag_mcp.analyze_queries --report-only

# Analyze last 7 days only
python -m rag_mcp.analyze_queries --since 7d

# Set approver name for audit trail
python -m rag_mcp.analyze_queries --approver "your-name"

# Export analysis to JSON
python -m rag_mcp.analyze_queries --export analysis.json

Interactive Workflow

The tool is designed for both human operators and AI agents:

  1. Analysis: Reads query logs and computes statistics
  2. Report: Shows query type breakdown, attention issues, content gaps
  3. Recommendations: Generates specific tuning suggestions with rationale
  4. Approval: Prompts for Y/N approval on each recommendation
  5. Apply: Saves approved changes to data/tuning_config.json
  6. Audit Trail: Records who approved each change and why

Example session:

$ python -m rag_mcp.analyze_queries
Analyzing query logs...

======================================================================
RAG QUERY ANALYSIS REPORT
======================================================================
Period: 2026-01-15 08:00 to 2026-02-02 10:30
Total queries analyzed: 1523

----------------------------------------------------------------------
QUERY TYPE STATISTICS
----------------------------------------------------------------------
Type              Count      Avg      P25      Min     Low%
----------------------------------------------------------------------
general             892    0.712    0.645    0.412     8.2%
mitre_id            456    0.789    0.715    0.521     3.1%
detection           175    0.698    0.621    0.445    12.0%

======================================================================
RECOMMENDATIONS
======================================================================

[1] Lower detection threshold from 0.55 to 0.52
    Type: threshold
    Confidence: medium
    Affected queries: 21
    Rationale: 12.0% of 175 queries scored below current threshold.

----------------------------------------------------------------------
APPROVAL REQUIRED
----------------------------------------------------------------------
[1/1] Lower detection threshold from 0.55 to 0.52
  Rationale: 12.0% of 175 queries scored below current threshold.
  Change: 0.55 -> 0.52
  Confidence: medium

  Approve? [Y/N/Q]: y
  -> APPROVED

1 change(s) applied and saved to tuning_config.json

What Gets Flagged

The attention logger flags these conditions for review:

Condition Meaning Action
zero_results No matches found Content gap - add relevant data
low_score:<score> Top score below 0.50 Poor semantic match
unknown_mitre_ids:<ids> MITRE ID not in lookup Data refresh needed
weak_mitre_match:<score> MITRE query scored below 0.60 Check augmentation

Tuning Configuration

Approved changes are saved to data/tuning_config.json:

{
  "version": "1.0",
  "thresholds": {
    "general": 0.50,
    "mitre_id": 0.55,
    "detection": 0.52,
    "forensic": 0.55
  },
  "source_boosts": {
    "forensic_clarifications": 1.15
  },
  "keyword_boost": 1.15,
  "last_modified": "2026-02-02T10:45:00",
  "last_modified_by": "analyst",
  "modification_history": [...]
}

The index automatically loads this configuration on startup.

Safe Bounds

Automated recommendations stay within safe limits:

  • Thresholds: 0.40 - 0.70 (never too permissive or restrictive)
  • Boosts: 1.0 - 1.30 (maximum 30% boost)

Audit Trail

The tuning configuration maintains a modification history for accountability:

  • Maximum 100 entries retained in tuning_config.json
  • When limit is exceeded, old entries are logged before removal
  • Each entry records: timestamp, parameter, old/new values, approver, reason

For long-term audit retention, configure logging to capture rag_mcp.tuning_config INFO messages to a persistent log aggregator.

Security

Filesystem Safety

The build system uses sentinel-based deletion guards to prevent accidental data loss:

  • Managed directories contain a .rag_mcp_managed sentinel file
  • All deletions go through safe_rmtree() with full safety checks
  • Sentinel requirement can be relaxed for first-time setup, but all other guards remain
  • Forbidden paths (/, /home, /root, etc.) are blocked regardless of sentinel
  • Minimum depth checks prevent deleting top-level directories
  • Root containment ensures deletions stay within project boundaries

Network Hardening

All network fetches include multiple security layers:

Protection Description
HTTPS-only HTTP URLs rejected by default (configurable)
Size limits Downloads capped at 60MB to prevent resource exhaustion
Host allowlist Only approved hosts (github.com, raw.githubusercontent.com, etc.)
IP literal blocking Direct IP addresses blocked to prevent SSRF
Redirect validation Redirect targets must be on allowlist
Retry with backoff Transient failures (429, 5xx, timeouts) retried with exponential backoff

GITHUB_TOKEN Permissions

If you set GITHUB_TOKEN for higher API rate limits, use minimal permissions:

# Create a Fine-grained Personal Access Token with:
# - Public Repositories (read-only) - NO other permissions needed
# - No access to private repositories
# - No write permissions

export GITHUB_TOKEN="github_pat_..."

The token is only used for:

  • Checking latest commit SHAs (version detection)
  • Checking latest release tags
  • Cloning public repositories

Never use tokens with write access or private repo access.

Dependency Scanning

Periodically scan dependencies for known vulnerabilities:

# Install pip-audit
pip install pip-audit

# Scan for vulnerabilities
pip-audit

# Or with requirements file
pip-audit -r requirements.txt

Consider adding to CI/CD pipelines for automated scanning.

Network Exposure Warning

The MCP server uses stdio transport only (stdin/stdout). This is secure for local use.

Do NOT expose this server over a network without additional hardening:

  • No authentication is implemented
  • No rate limiting on queries
  • No TLS/encryption

If network access is required, place behind an authenticated reverse proxy with rate limiting.

Requirements

  • Python 3.10+
  • ~2GB disk space (model + index)
  • ~1GB RAM for search operations

Acknowledgments

Architecture and direction by Steve Anson. Implementation by Claude Code (Anthropic).

License

MIT

About

MCP server providing semantic search over 23 authoritative incident response knowledge sources

Resources

License

Security policy

Stars

Watchers

Forks

Packages

No packages published