Skip to content

seanbrar/pollux

Pollux

Multimodal orchestration for LLM APIs.

You describe what to analyze. Pollux handles source patterns, context caching, and multimodal complexity—so you don't.

Documentation · Quickstart · Cookbook

PyPI CI codecov Testing: MTMT Python License

Quick Start

import asyncio
from pollux import Config, Source, run

result = asyncio.run(
    run(
        "What are the key findings?",
        source=Source.from_text(
            "Pollux supports fan-out, fan-in, and broadcast source patterns. "
            "It also supports context caching for repeated prompts."
        ),
        config=Config(provider="gemini", model="gemini-2.5-flash-lite"),
    )
)
print(result["answers"][0])
# "The key findings are: (1) three source patterns (fan-out, fan-in,
#  broadcast) and (2) context caching for token and cost savings."

run() returns a ResultEnvelope dict — answers is a list with one entry per prompt.

To use OpenAI instead: Config(provider="openai", model="gpt-5-nano").

For a full 2-minute walkthrough (install, key setup, success checks), see the Quickstart.

Why Pollux?

  • Multimodal-first: PDFs, images, video, YouTube URLs, and arXiv papers—same API
  • Source patterns: Fan-out (one source, many prompts), fan-in (many sources, one prompt), and broadcast (many-to-many)
  • Context caching: Upload once, reuse across prompts—save tokens and money
  • Structured output: Get typed responses via Options(response_schema=YourModel)
  • Built for reliability: Async execution, automatic retries, concurrency control, and clear error messages with actionable hints

Installation

pip install pollux-ai

API Keys

Get a key from Google AI Studio or OpenAI Platform, then:

# Gemini (recommended starting point — supports context caching)
export GEMINI_API_KEY="your-key-here"

# OpenAI
export OPENAI_API_KEY="your-key-here"

Usage

Multi-Source Analysis

import asyncio

from pollux import Config, Source, run_many

async def main() -> None:
    config = Config(provider="gemini", model="gemini-2.5-flash-lite")
    sources = [
        Source.from_file("paper1.pdf"),
        Source.from_file("paper2.pdf"),
    ]
    prompts = ["Summarize the main argument.", "List key findings."]

    envelope = await run_many(prompts, sources=sources, config=config)
    for answer in envelope["answers"]:
        print(answer)

asyncio.run(main())

YouTube and arXiv Sources

from pollux import Source

lecture = Source.from_youtube("https://www.youtube.com/watch?v=dQw4w9WgXcQ")
paper = Source.from_arxiv("2301.07041")

Pass these to run() or run_many() like any other source — Pollux handles the rest.

Structured Output

import asyncio

from pydantic import BaseModel

from pollux import Config, Options, Source, run

class Summary(BaseModel):
    title: str
    key_points: list[str]
    sentiment: str

result = asyncio.run(
    run(
        "Summarize this document.",
        source=Source.from_file("report.pdf"),
        config=Config(provider="gemini", model="gemini-2.5-flash-lite"),
        options=Options(response_schema=Summary),
    )
)
parsed = result["structured"]  # Summary instance
print(parsed.key_points)

Configuration

from pollux import Config

config = Config(
    provider="gemini",
    model="gemini-2.5-flash-lite",
    enable_caching=True,  # Gemini-only in v1.0
)

See the Configuration Guide for details.

Provider Differences

Pollux does not force strict feature parity across providers in v1.0. See the capability matrix: Provider Capabilities.

Documentation

Contributing

See CONTRIBUTING and TESTING.md for guidelines.

Built during Google Summer of Code 2025 with Google DeepMind. Learn more

License

MIT

About

No description, website, or topics provided.

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Packages

No packages published