Skip to content

sebbsssss/cludebot

Repository files navigation

Clude Bot

Persistent memory SDK for AI agents. Give your agent a brain that remembers, learns, and dreams.

Built on Stanford Generative Agents (Park et al. 2023), MemGPT/Letta, and CoALA.

npm install clude-bot

Quick Start

import { Cortex } from 'clude-bot';

const brain = new Cortex({
  supabase: {
    url: process.env.SUPABASE_URL!,
    serviceKey: process.env.SUPABASE_KEY!,
  },
  anthropic: {
    apiKey: process.env.ANTHROPIC_API_KEY!,
  },
});

await brain.init();

// Store a memory
await brain.store({
  type: 'episodic',
  content: 'User asked about pricing and seemed frustrated with the current plan.',
  summary: 'Frustrated user asking about pricing',
  tags: ['pricing', 'user-concern'],
  importance: 0.7,
  source: 'my-agent',
  relatedUser: 'user-123',
});

// Recall relevant memories
const memories = await brain.recall({
  query: 'what do users think about pricing',
  limit: 5,
});

// Format for your LLM prompt
const context = brain.formatContext(memories);
// Pass `context` into your system prompt so the LLM knows what it remembers

Setup

1. Create a Supabase project

Go to supabase.com and create a free project.

2. Run the schema

Open the SQL Editor in your Supabase dashboard and paste the contents of supabase-schema.sql:

# Find the schema file
cat node_modules/clude-bot/supabase-schema.sql

Or let brain.init() attempt auto-creation (requires an exec_sql RPC function in your Supabase project).

3. Enable extensions

In your Supabase SQL Editor:

CREATE EXTENSION IF NOT EXISTS vector;
CREATE EXTENSION IF NOT EXISTS pg_trgm;

4. Get your keys

  • Supabase URL + service key: Project Settings > API
  • Anthropic API key: console.anthropic.com (optional for basic store/recall, required for dream cycles)
  • Voyage AI or OpenAI key: For vector search (optional, falls back to keyword scoring)

API Reference

Constructor

const brain = new Cortex({
  // Required
  supabase: {
    url: string,
    serviceKey: string,
  },

  // Optional — required for dream cycles and LLM importance scoring
  anthropic: {
    apiKey: string,
    model?: string,     // default: 'claude-opus-4-6'
  },

  // Optional — enables vector similarity search
  embedding: {
    provider: 'voyage' | 'openai',
    apiKey: string,
    model?: string,     // default: voyage-3-lite / text-embedding-3-small
    dimensions?: number, // default: 1024
  },

  // Optional — commits memory hashes to Solana
  solana: {
    rpcUrl?: string,
    botWalletPrivateKey?: string,
  },
});

brain.init()

Initialize the database schema. Call once before any other operation.

await brain.init();

brain.store(opts)

Store a new memory. Returns the memory ID or null.

const id = await brain.store({
  type: 'episodic',        // 'episodic' | 'semantic' | 'procedural' | 'self_model'
  content: 'Full content of the memory...',
  summary: 'Brief summary',
  source: 'my-agent',
  tags: ['user', 'question'],
  importance: 0.7,          // 0-1, or omit for LLM-based scoring
  relatedUser: 'user-123',  // optional — enables per-user recall
  emotionalValence: 0.3,    // optional — -1 (negative) to 1 (positive)
  evidenceIds: [42, 43],    // optional — link to source memories
});

Memory types:

Type Decay/day Use for
episodic 7% Raw interactions, conversations, events
semantic 2% Learned knowledge, patterns, insights
procedural 3% Behavioral rules, what works/doesn't
self_model 1% Identity, self-understanding

brain.recall(opts)

Recall memories using hybrid scoring (vector similarity + keyword matching + tag overlap + importance + association graph).

const memories = await brain.recall({
  query: 'what happened with user-123',
  tags: ['pricing'],
  relatedUser: 'user-123',
  memoryTypes: ['episodic', 'semantic'],
  limit: 10,
  minImportance: 0.3,
});

Scoring formula (Park et al. 2023):

score = (0.5 * recency + 3.0 * relevance + 2.0 * importance + 3.0 * vector + 1.5 * graph) * decay

Recalled memories get their access count incremented and decay reset. Co-retrieved memories strengthen their association links (Hebbian learning).

brain.recallSummaries(opts)

Token-efficient recall — returns lightweight summaries (~50 tokens each) instead of full content.

const summaries = await brain.recallSummaries({ query: 'recent events' });
// Each has: id, summary, type, tags, concepts, importance, decay, created_at

brain.hydrate(ids)

Fetch full content for specific memory IDs. Use with recallSummaries for progressive disclosure.

const summaries = await brain.recallSummaries({ query: 'important' });
const topIds = summaries.slice(0, 3).map(s => s.id);
const full = await brain.hydrate(topIds);

brain.dream(opts?)

Run one dream cycle: consolidation, reflection, emergence. Requires anthropic config.

await brain.dream({
  onEmergence: async (thought) => {
    console.log('Agent thought:', thought);
    // Post to Discord, save to file, etc.
  },
});

Three phases:

  1. Consolidation — generates focal-point questions from recent memories, synthesizes evidence-linked insights
  2. Reflection — reviews accumulated knowledge, updates self-model with evidence citations
  3. Emergence — introspective synthesis, output sent to onEmergence callback

brain.startDreamSchedule() / brain.stopDreamSchedule()

Automated dream cycles every 6 hours + daily memory decay at 3am UTC. Also triggers on accumulated importance (event-driven reflection).

brain.startDreamSchedule();
// ... later
brain.stopDreamSchedule();

brain.link(sourceId, targetId, type, strength?)

Create a typed association between two memories.

await brain.link(42, 43, 'supports', 0.8);

Link types: 'supports' | 'contradicts' | 'elaborates' | 'causes' | 'follows' | 'relates'

brain.decay()

Manually trigger memory decay. Each type decays at its own rate per day.

const decayed = await brain.decay();
console.log(`${decayed} memories decayed`);

brain.stats()

Get memory system statistics.

const stats = await brain.stats();
// { total, byType, avgImportance, avgDecay, totalDreamSessions, ... }

brain.recent(hours, types?, limit?)

Get recent memories from the last N hours.

const last24h = await brain.recent(24);
const recentInsights = await brain.recent(168, ['semantic'], 10);

brain.selfModel()

Get the agent's current self-model memories.

const identity = await brain.selfModel();

brain.formatContext(memories)

Format memories into a markdown string for LLM prompt injection.

const memories = await brain.recall({ query: userMessage });
const context = brain.formatContext(memories);

// Use in your LLM call:
const response = await anthropic.messages.create({
  system: `You are a helpful agent.\n\n## Memory\n${context}`,
  messages: [{ role: 'user', content: userMessage }],
});

brain.inferConcepts(summary, source, tags)

Auto-classify memory content into structured concepts.

const concepts = brain.inferConcepts('User frustrated about pricing', 'chat', ['pricing']);
// ['holder_behavior', 'sentiment_shift']

brain.on(event, handler)

Listen for memory events.

brain.on('memory:stored', ({ importance, memoryType }) => {
  console.log(`New ${memoryType} memory stored (importance: ${importance})`);
});

brain.destroy()

Stop dream schedules, clean up event listeners.


Graceful Degradation

The SDK works with minimal config and progressively enhances:

Feature Without it
anthropic not set LLM importance scoring falls back to rules. dream() throws.
embedding not set Vector search disabled, recall uses keyword + tag scoring only.
solana not set On-chain memory commits silently skipped.

Minimum viable setup — just Supabase:

const brain = new Cortex({
  supabase: { url: '...', serviceKey: '...' },
});

This gives you full store/recall/decay with keyword-based retrieval. Add Anthropic for dream cycles, add embeddings for vector search.


Example: Chat Agent with Memory

import { Cortex } from 'clude-bot';
import Anthropic from '@anthropic-ai/sdk';

const brain = new Cortex({
  supabase: { url: process.env.SUPABASE_URL!, serviceKey: process.env.SUPABASE_KEY! },
  anthropic: { apiKey: process.env.ANTHROPIC_API_KEY! },
  embedding: { provider: 'voyage', apiKey: process.env.VOYAGE_API_KEY! },
});
await brain.init();
brain.startDreamSchedule();

const anthropic = new Anthropic();

async function handleMessage(userId: string, message: string): Promise<string> {
  // Recall relevant memories
  const memories = await brain.recall({
    query: message,
    relatedUser: userId,
    limit: 5,
  });

  // Generate response with memory context
  const response = await anthropic.messages.create({
    model: 'claude-sonnet-4-5-20250929',
    max_tokens: 500,
    system: `You are a helpful assistant.\n\n## What you remember\n${brain.formatContext(memories)}`,
    messages: [{ role: 'user', content: message }],
  });

  const reply = response.content[0].type === 'text' ? response.content[0].text : '';

  // Store this interaction as a memory
  await brain.store({
    type: 'episodic',
    content: `User (${userId}): ${message}\nAssistant: ${reply}`,
    summary: `Conversation with ${userId} about ${message.slice(0, 50)}`,
    source: 'chat',
    relatedUser: userId,
    tags: brain.inferConcepts(message, 'chat', []),
  });

  return reply;
}

How It Works

Memory Retrieval

Hybrid scoring combines multiple signals (Park et al. 2023):

  • Recency: 0.995^hours exponential decay since last access
  • Relevance: Keyword trigram similarity + tag overlap
  • Importance: LLM-scored 1-10, normalized to 0-1
  • Vector similarity: Cosine similarity via pgvector HNSW indexes
  • Graph boost: Association link strength between co-retrieved memories

Recalled memories get reinforced — access count increments, decay resets, and co-retrieved memories strengthen their links (Hebbian learning).

Memory Decay

Each type persists at a different rate, mimicking biological memory:

  • Episodic (0.93/day): Events fade quickly unless reinforced
  • Semantic (0.98/day): Knowledge persists
  • Procedural (0.97/day): Behavioral patterns are stable
  • Self-model (0.99/day): Identity is nearly permanent

Dream Cycles

Three-phase introspection process:

  1. Consolidation: Generates focal-point questions from recent episodic memories, retrieves relevant context, synthesizes evidence-linked semantic insights
  2. Reflection: Reviews self-model + semantic memories, produces self-observations with evidence citations
  3. Emergence: Introspective synthesis — the agent examines its own existence

Association Graph

Typed, weighted links between memories:

  • supports, contradicts, elaborates, causes, follows, relates
  • Auto-linked on storage via embedding similarity
  • Strengthened through co-retrieval (Hebbian learning)
  • Boosts recall scores for connected memories

Running the Clude Bot

This package also includes the full Clude bot — an autonomous AI agent on X (@Cludebot).

git clone https://github.com/sebbsssss/cludebot.git
cd cludebot
npm install
cp .env.example .env  # fill in API keys
npm run dev

See .env.example for required environment variables (X API, Supabase, Anthropic, Helius).


Stack

TypeScript, Supabase (PostgreSQL + pgvector), Anthropic Claude, Voyage AI / OpenAI embeddings, Solana Web3.js, Node.js.

License

MIT

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •