Skip to content
/ Comb Public

Comb is a plug-and-play storage system for long-context LLM serving.

License

Notifications You must be signed in to change notification settings

shijuzhao/Comb

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

COMB

COMB

COMB is a plug-and-play caching system for long-context LLM serving.

Code Structure

COMB
├── benchmarks                   # For benchmarking
├── comb
│   ├── entrypoints
│   │   ├── api_server.py        # For online server
│   │   └── comb.py              # For offline inference
│   ├── integration
│   │   ├── hf                   # hf transformers backend
│   │   ├── vllm                 # vLLM backend
│   │   └── __init__.py
│   ├── storage
│   │   ├── chunk_processor.py   # For generating PIC
│   │   ├── pic_allocator.py     # For allocating memory
│   │   ├── pic_manager.py       # For managing PIC
│   │   └── pic_utils.py
│   ├── transfer
│   │   └── cuda_ipc_utils.py    # For inter-process communication
│   ├── __init__.py
│   ├── output.py
│   └── supported_models.py
├── data
├── examples                     # For use case
├── training                     # For training
├── environment.yml
└── requirements.txt

Getting Started

Run the following commands to prepare the environment. We recommend appending two export commands to the end of ~/.bashrc.

export PYTHONPATH=~/Comb:$PYTHONPATH
export TOKENIZERS_PARALLELISM=true
pip install -r requirements.txt

Install vllm. (Recommended for efficiency and benchmarking)

pip install vllm

Currently we only support meta-llama/Llama-3.1-8B-Instruct and deepseek-ai/DeepSeek-V2-Lite-Chat. If you want to use another model, you can also train a Comb model by yourself through following our instructions.

Usage

You can find examples in the folder examples.

Benchmark

See Instructions.

About

Comb is a plug-and-play storage system for long-context LLM serving.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages