Skip to content

shreyaspoojary027/Learn-Python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🐍 Python Interview Roadmap – Complete Concept .

🧩 1. Basics & Core Syntax

  • Python installation, running scripts, using IDLE / VS Code
  • Comments (# single, ''' multi-line ''')
  • Input / Output (input(), print())
  • Variables and constants
  • Data types: int, float, str, bool, complex
  • Type conversion (int(), float(), str())
  • Operators: arithmetic, comparison, logical, assignment, identity, membership
  • Conditional statements: if, elif, else
  • Loops: while and for
  • Control statements: break, continue, pass

🧮 2. Data Structures

  • String manipulation, slicing, methods (replace, split, join)

  • List: indexing, slicing, methods (append, remove, sort, copy)

  • Tuple: immutable sequences

  • Set: unique elements, operations (union, intersection)

  • Dictionary: key-value pairs, methods (keys(), values(), items())

  • Comprehensions:

    • List comprehension
    • Dict comprehension
    • Set comprehension

🧠 3. Functions

  • Defining functions with def
  • Return values & scope (local, global)
  • Default, positional & keyword arguments
  • *args and **kwargs
  • Lambda functions (anonymous functions)
  • Built-in functions: map, filter, reduce, zip, enumerate
  • Recursion (calling a function inside itself)

🧰 4. Modules & Packages

  • Creating and importing your own modules
  • Built-in modules: math, datetime, os, random, sys
  • Installing external packages using pip
  • The __name__ == "__main__" concept

🏗️ 5. File Handling

  • Open, read, write, append files (open(), with statement`)
  • Working with text and CSV files
  • Exception handling in file I/O

⚠️ 6. Exception Handling

  • try, except, else, finally blocks
  • Handling multiple exceptions
  • Custom exceptions (raise ValueError("message"))

🧱 7. Object-Oriented Programming (OOP)

  • Classes and objects
  • __init__ constructor
  • Instance vs. class variables
  • Methods vs. static methods
  • Inheritance and super()
  • Polymorphism (same method, different behavior)
  • Encapsulation (_protected, __private)
  • Abstraction using abc module
  • Dunder (Magic) Methods like __str__, __len__, __add__

🔄 8. Advanced Function Concepts

  • Decorators — add behavior to functions
  • Iterators (__iter__, __next__)
  • Generators (yield)
  • Closures — inner functions that remember state
  • Higher-Order Functions — functions taking functions as arguments

🧩 9. Collections Module

  • namedtuple
  • deque
  • Counter
  • defaultdict
  • OrderedDict

📚 10. Regular Expressions (Regex)

  • import re
  • Functions: match, search, findall, sub, split
  • Meta characters: . ^ $ * + ? {} [] | ()

💾 11. Working with Data

(Very useful for analytics interviews)

  • CSV handling (csv module, pandas.read_csv)
  • JSON (json module)
  • Excel Files (with openpyxl, pandas)
  • SQLite / MySQL (using sqlite3 or mysql.connector)

⚙️ 12. Advanced Topics

  • Itertools (combinations, permutations, product)
  • Functools (lru_cache, reduce, partial)
  • Datetime manipulations
  • Logging module
  • OS and sys module (file paths, environment variables)

🤖 13. Data Analytics & Visualization

  • NumPy – arrays, broadcasting, vectorized operations
  • Pandas – DataFrame operations, filtering, grouping, merging
  • Matplotlib / Seaborn – plotting graphs
  • Statistics – mean, median, std, correlation

☁️ 14. Intermediate / Interview-Level Concepts

  • Shallow vs. Deep Copy (copy module)
  • Mutable vs. Immutable types
  • Virtual environments (venv)
  • Multithreading & Multiprocessing (basics)
  • Python Memory Model & Garbage Collection

🧪 15. Testing & Best Practices

  • Unit Testing with unittest or pytest
  • Docstrings and type hints (typing module)
  • Code readability (PEP 8)
  • Git + GitHub integration

🧭 16. Projects / Integration

For analytics or interview demo:

  • File data summarizer (read CSV → analyze → write output)
  • SQL + Pandas dashboard
  • API fetch → data cleaning → visualization
  • Simple Flask web app

✅ Summary Table

Level Category Key Topics
🟢 Beginner Basics Syntax, Variables, Loops, Conditions
🟡 Intermediate Data Structures Lists, Dicts, Sets, Functions
🟠 Advanced OOP, Decorators Classes, Inheritance, Generators
🔵 Expert Data, OOP, Modules Pandas, Regex, Exception Handling
🟣 Job-ready Projects Analytics, APIs, Automation

Would you like me to convert this into a 30-Day Python Interview Challenge (Markdown version) — 📅 daily schedule + topics + interview Q&A + mini project — so you can upload it as DAY_1.md, DAY_2.md, etc.? That would make your GitHub repo look like a complete learning journal + portfolio project.

About

This is my Python leaning repo. Here I added by python basics code

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published