Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 5 additions & 65 deletions doc/design_intermediate_representation.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,77 +21,17 @@ We propose the following code structures.
sql/
...
codegen/
feature_column.go
intermediate_representation.go
tensorflow/
train.go
predict.go
analyze.go
...
xgboost/
...
```

The `tensorflow` package will expose function `func Train(ir sql.TrainIR) string, error`, which takes the `sql`'s `TrainIR` and returns a generated Python program.
The IR and feature column definition will resides in `sql/codegen`. Each code generator package forms a subdirectory in `sql/codegen` like `sql/codegen/tensorflow/`.

## Intermediate Representation

We propose the following struct as the IR for code generation.

```go
package sql

import (
"github.com/sql-machine-learning/sqlflow/sql/columns"
)

type FieldType int

const (
Int FieldType = iota
Float
String
)

// FieldMeta contains the meta information for decoding and feature columns
type FieldMeta struct {
DType FieldType // e.g. "float", "int32"
Delimiter string // e.g. ","
Shape []int // e.g. [1], [1 2 3]
IsSparse bool // e.g. false
FeatureColumn []columns.FeatureColumn // e.g. [EmbeddingColumn, CategoryIDColumn]
}

// TrainIR is the intermediate representation for code generation of a training job
type TrainIR struct {
DataSource string // e.g. "hive://root:root@localhost:10000/churn"
Select string // e.g. "select * from iris.train"
ValidationSelect string // e.g. "select * from iris.val;"
Estimator string // e.g. "DNNClassifier"
Attribute map[string]interface{} // e.g. {"train.epoch": 1000, "model.hidden_units": [10 10]}
Feature map[string]map[string]FieldMeta // e.g. {"feature_columns": {"sepal_length": {"float", "", [1], false}, ...}}
Label map[string]FieldMeta // e.g. {"class": {"int32", "", [1], false}}
}

// PredictIR is the intermediate representation for code generation of a prediction job
type PredictIR struct {
DataSource string // e.g. "hive://root:root@localhost:10000/churn"
Select string // e.g. "select * from iris.test"
Estimator string // e.g. "DNNClassifier"
Attribute map[string]interface{} // e.g. {"predict.batch_size": 32}
Feature map[string]map[string]FieldMeta // e.g. {"feature_columns": {"sepal_length": {"float", "", [1], false}, ...}}
Label map[string]FieldMeta // e.g. {"class": {"int32", "", [1], false}}
ReusltTable string // e.g. "iris.predict"
}

// AnalyzeIR is the intermediate representation for code generation of a analysis job
type AnalyzeIR struct {
DataSource string // e.g. "hive://root:root@localhost:10000/churn"
Select string // e.g. "select * from iris.train"
Estimator string // e.g. "DNNClassifier"
Attribute map[string]interface{} // e.g. {"analyze.plot_type": "bar"}
Feature map[string]map[string]FieldMeta // e.g. {"feature_columns": {"sepal_length": {"float", "", [1], false}, ...}}
Label map[string]FieldMeta // e.g. {"class": {"int32", "", [1], false}}
}
```

Please be aware that all the IR excludes the information of the current working directory. This information belongs to the `executor` in `sql` package. For a prediction/analyze job, the `executor` should recover everything produced by the training job.
Please refer to [sql/codegen/intermediate_representation.go](sql/codegen/intermediate_representation.go) and [sql/codegen/feature_column.go](sql/codegen/intermediate_representation.go) for implementation details.

Please be aware that `TrainIR` excludes the saving table name. This information belongs to the `executor` in `sql` package.
22 changes: 22 additions & 0 deletions sql/codegen/feature_column.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
// Copyright 2019 The SQLFlow Authors. All rights reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package codegen

// NumericColumn represents a dense tensor for the model input.
//
// FieldMeta indicates the meta information for decoding the field. Please be aware
// that FieldMeta also contains information for dimension and data type.
type NumericColumn struct {
FieldMeta *FieldMeta
}
123 changes: 123 additions & 0 deletions sql/codegen/intermediate_representation.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
// Copyright 2019 The SQLFlow Authors. All rights reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package codegen

// FieldType indicates the field type of a table column
type FieldType int

const (
// Int indicates the corresponding table column is an integer
Int FieldType = iota
// Float indicates the corresponding table column is a float
Float
// String indicates the corresponding table column is a string
String
)

// FieldMeta contains the meta information for decoding. A field is a selected column of a SQL result.
//
// Name indicates the name for a field.
//
// DType indicates the data type for a field. For example: Int, Float, String.
//
// Delimiter indicates the decoding method of a field. For example, the field may
// contain a string like "1,23,42" which represent a 3-D tensor [1, 23, 42].
//
// Shape indicates the shape of the tensor represented for a field. For exmaple, the
// field may contain a string like "1,23,42" which represent a 3-D tensor, the shape
// will be [3].
//
// IsSparse indicates the type of tensor for a field. True means the tensor is a sparse tensor.
type FieldMeta struct {
Name string `json:"name"` // e.g. "spetal_length"
DType FieldType `json:"dtype"` // e.g. "float", "int32"
Delimiter string `json:"delimiter"` // e.g. ","
Shape []int `json:"shape"` // e.g. [1], [1 2 3]
IsSparse bool `json:"is_sparse"` // e.g. false
}

// FeatureColumn indicates the feature column to be applied on the field. Please refer to
// github.com/sql-machine-learning/sqlflow/sql/codegen/feature_column.go for detailed list of all feature columns.
type FeatureColumn interface{}

// Attribute represents an parsed entry in the WITH clause.
type Attribute struct {
Key string
Value interface{}
}

// TrainIR is the intermediate representation for code generation of a training job.
//
// Please be aware that the TrainIR intentionally excludes the model table name in the
// INTO clause. The sql package will save the output files of a generated Python program.
// For prediction and analysis jobs, the sql will restore an identical working directly.
type TrainIR struct {
// DataSource contains the connection information. For example, "hive://root:root@localhost:10000/churn"
DataSource string
// Select specifies the query for fetching the training data. For example, "select * from iris.train;".
Select string
// ValidationSelect specifies the query for fetching the validation data. For example, "select * from iris.val;".
ValidationSelect string
// Estimator specifies the estimator type. For example, after parsing "select ... train DNNClassifier WITH ...",
// the Estimator will be "DNNClassifier".
Estimator string
// Attributes contain a list of parsed attribute in the WITH Clause. For example, after parsing
// "select ... train ... with train.epoch = 1000, model.hidden_units = [10, 10]",
// the Attributes will be {{"train.epoch", 1000}, {"model.hidden_units", [10 10]}}.
Attributes []Attribute
// Features contain a map of a list of feature columns in the COLUMN clause.
// For multiple COLUMN clauses like
// ```
// column ... for deep_feature
// column ... for wide_feature
// ```
// They will be parsed as {"deep_feature": {...}, "wide_feature": {...}}
// For single column clause like "column ...", "feature_columns" will be used as the default map key.
Features map[string][]FeatureColumn
// Label specifies the feature column in the LABEL clause.
Label FeatureColumn
}

// PredictIR is the intermediate representation for code generation of a prediction job
//
// Please be aware the PredictionIR contains the result table name, so the
// generated Python program is responsible to create and write the result table.
type PredictIR struct {
// DataSource contains the connection information. For example, "hive://root:root@localhost:10000/churn"
DataSource string
// Select specifies the query for fetching the prediction data. For example, "select * from iris.test;".
Select string
// ResultTable specifies the table to store the prediction result.
ResultTable string
// Attributes contain a list of parsed attribute in the WITH clause. For example, after parsing
// "select ... predict ... with predict.batch_size = 32 into ...",
// the Attributes will be {{"predict.batch_size", 32}}
Attributes []Attribute
// TrainIR is the TrainIR used for generating the training job of the corresponding model
TrainIR TrainIR
}

// AnalyzeIR is the intermediate representation for code generation of a analysis job
type AnalyzeIR struct {
// DataSource contains the connection information. For example, "hive://root:root@localhost:10000/churn"
DataSource string
// Select specifies the query for fetching the analysis data. For example, "select * from iris.test;".
Select string
// Attributes contain a list of parsed attribute in the WITH clause. For example, after parsing
// "select ... analyze ... with analyze.plot_type = "bar"",
// the Attributes will be {{"analyze.plot_type", "bar"}}
Attributes []Attribute
// TrainIR is the TrainIR used for generating the training job of the corresponding model
TrainIR TrainIR
}