Skip to content

suhasramanand/distributed-query-engine-reliability

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Distributed Query Engine Reliability on Kubernetes

A production-grade implementation for deploying and benchmarking distributed SQL query engines (Presto/Trino, ClickHouse, Spark) on Kubernetes with comprehensive fault tolerance, monitoring, and performance optimization.

Objectives

  • Deploy and benchmark distributed SQL query engines on Kubernetes clusters
  • Simulate analytical workloads of 10TB+ scale for benchmarking query performance
  • Ensure fault-tolerant, reproducible deployments with Infrastructure-as-Code and CI/CD
  • Optimize for scalability, latency reduction, and reliability under failure conditions

— Architecture

                                                                                                                                                                                                        �
  ‚                    Kubernetes Cluster                            ‚
                                                                                                                                                                                                        ¤
  ‚                                              �                                              �                                              �              ‚
  ‚    ‚   Presto      ‚    ‚  ClickHouse   ‚    ‚    Spark      ‚              ‚
  ‚    ‚   Cluster     ‚    ‚   Cluster     ‚    ‚   Operator    ‚              ‚
  ‚                                              ˜                                              ˜                                              ˜              ‚
                                                                                                                                                                                                        ¤
  ‚                                              �                                              �                                              �              ‚
  ‚    ‚    Kafka      ‚    ‚   MinIO/S3    ‚    ‚ Monitoring    ‚              ‚
  ‚    ‚  (Ingestion)  ‚    ‚ (Storage)     ‚    ‚   Stack       ‚              ‚
  ‚                                              ˜                                              ˜                                              ˜              ‚
                                                                                                                                                                                                        ¤
  ‚                                              �                                              �                                              �              ‚
  ‚    ‚  Prometheus   ‚    ‚   Grafana     ‚    ‚   ELK/EFK     ‚              ‚
  ‚    ‚ (Metrics)     ‚    ‚ (Dashboards)  ‚    ‚ (Logs)        ‚              ‚
  ‚                                              ˜                                              ˜                                              ˜              ‚
                                                                                                                                                                                                        ˜

Quick Start

Prerequisites

  • Terraform >= 1.0
  • kubectl >= 1.24
  • helm >= 3.8
  • Docker
  • AWS CLI / Google Cloud SDK

Deployment

  1. Clone and Setup

    git clone https://github.com/suhasramanand/distributed-query-engine-reliability.git
    cd distributed-query-engine-reliability
  2. Configure Cloud Provider

    # For AWS
    export AWS_ACCESS_KEY_ID="your-access-key"
    export AWS_SECRET_ACCESS_KEY="your-secret-key"
    export AWS_REGION="us-west-2"
    
    # For GCP
    export GOOGLE_APPLICATION_CREDENTIALS="path/to/service-account.json"
    export GOOGLE_PROJECT="your-project-id"
  3. Deploy Infrastructure

    cd terraform
    terraform init
    terraform plan
    terraform apply
  4. Deploy Applications

    cd ../helm
    ./deploy-all.sh
  5. Run Benchmarks

    cd ../benchmarks
    ./run-tpch-benchmark.sh

� Project Structure

          terraform/                 # Infrastructure as Code
  ‚             modules/
  ‚     ‚             eks/              # EKS cluster configuration
  ‚     ‚             networking/       # VPC, subnets, security groups
  ‚     ‚             storage/          # S3/GCS bucket configuration
  ‚     ‚             monitoring/       # CloudWatch/Stackdriver setup
  ‚             environments/
  ‚                 dev/
  ‚                 prod/
          helm/                      # Helm charts
  ‚             presto/               # Presto/Trino cluster
  ‚             clickhouse/           # ClickHouse cluster
  ‚             spark-operator/       # Spark operator
  ‚             kafka/                # Kafka for data ingestion
  ‚             minio/                # MinIO object storage
  ‚             monitoring/           # Prometheus, Grafana, ELK
          benchmarks/               # Performance testing
  ‚             tpch/                 # TPC-H benchmark scripts
  ‚             tpcds/                # TPC-DS benchmark scripts
  ‚             data-generator/       # Synthetic data generation
  ‚             results/              # Benchmark results
          fault-tests/              # Chaos engineering
  ‚             chaos-mesh/           # Chaos Mesh experiments
  ‚             litmus/               # Litmus chaos experiments
  ‚             recovery-tests/       # Recovery time testing
          .github/workflows/        # CI/CD pipelines
  ‚             terraform.yml         # Infrastructure deployment
  ‚             helm-deploy.yml       # Application deployment
  ‚             benchmarks.yml        # Automated benchmarking
          docs/                     # Documentation
              architecture.md       # Detailed architecture
              deployment.md         # Deployment guide
              troubleshooting.md    # Troubleshooting guide

Performance Targets

  • Query Latency: 40% reduction through optimization
  • Recovery Time: 35% improvement in failover procedures
  • Throughput: Support 10TB+ analytical workloads
  • Availability: 99.9% uptime with fault tolerance

Configuration

Query Engine Tuning

Each query engine is optimized for:

  • Presto/Trino: Memory management, connector optimization
  • ClickHouse: Merge tree settings, compression ratios
  • Spark: Executor memory, shuffle optimization

Auto-scaling Policies

  • Horizontal Pod Autoscaler (HPA) for query engines
  • Vertical Pod Autoscaler (VPA) for resource optimization
  • Cluster autoscaling for node pools

Monitoring & Observability

Metrics Dashboard

  • Query performance metrics
  • Resource utilization
  • Error rates and SLAs
  • Throughput and latency trends

Alerting

  • Query timeout alerts
  • Resource exhaustion warnings
  • SLA violation notifications
  • Cluster health status

Testing & Validation

Benchmark Suites

  • TPC-H queries (1GB to 10TB scale)
  • TPC-DS workload simulation
  • Custom analytical queries

Fault Injection

  • Pod restart scenarios
  • Node failure simulation
  • Network latency injection
  • Storage failure testing

¤ Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests and documentation
  5. Submit a pull request

„ License

MIT License - see LICENSE file for details

˜ Support

About

A distributed query engine reliability testing framework with fault injection, monitoring, and recovery mechanisms

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published