A production-grade implementation for deploying and benchmarking distributed SQL query engines (Presto/Trino, ClickHouse, Spark) on Kubernetes with comprehensive fault tolerance, monitoring, and performance optimization.
- Deploy and benchmark distributed SQL query engines on Kubernetes clusters
 - Simulate analytical workloads of 10TB+ scale for benchmarking query performance
 - Ensure fault-tolerant, reproducible deployments with Infrastructure-as-Code and CI/CD
 - Optimize for scalability, latency reduction, and reliability under failure conditions
 
                                                                                                                                                                                                        �
  ‚                    Kubernetes Cluster                            ‚
                                                                                                                                                                                                        ¤
  ‚                                              �                                              �                                              �              ‚
  ‚    ‚   Presto      ‚    ‚  ClickHouse   ‚    ‚    Spark      ‚              ‚
  ‚    ‚   Cluster     ‚    ‚   Cluster     ‚    ‚   Operator    ‚              ‚
  ‚                                              ˜                                              ˜                                              ˜              ‚
                                                                                                                                                                                                        ¤
  ‚                                              �                                              �                                              �              ‚
  ‚    ‚    Kafka      ‚    ‚   MinIO/S3    ‚    ‚ Monitoring    ‚              ‚
  ‚    ‚  (Ingestion)  ‚    ‚ (Storage)     ‚    ‚   Stack       ‚              ‚
  ‚                                              ˜                                              ˜                                              ˜              ‚
                                                                                                                                                                                                        ¤
  ‚                                              �                                              �                                              �              ‚
  ‚    ‚  Prometheus   ‚    ‚   Grafana     ‚    ‚   ELK/EFK     ‚              ‚
  ‚    ‚ (Metrics)     ‚    ‚ (Dashboards)  ‚    ‚ (Logs)        ‚              ‚
  ‚                                              ˜                                              ˜                                              ˜              ‚
                                                                                                                                                                                                        ˜
- Terraform >= 1.0
 - kubectl >= 1.24
 - helm >= 3.8
 - Docker
 - AWS CLI / Google Cloud SDK
 
- 
Clone and Setup
git clone https://github.com/suhasramanand/distributed-query-engine-reliability.git cd distributed-query-engine-reliability - 
Configure Cloud Provider
# For AWS export AWS_ACCESS_KEY_ID="your-access-key" export AWS_SECRET_ACCESS_KEY="your-secret-key" export AWS_REGION="us-west-2" # For GCP export GOOGLE_APPLICATION_CREDENTIALS="path/to/service-account.json" export GOOGLE_PROJECT="your-project-id"
 - 
Deploy Infrastructure
cd terraform terraform init terraform plan terraform apply - 
Deploy Applications
cd ../helm ./deploy-all.sh - 
Run Benchmarks
cd ../benchmarks ./run-tpch-benchmark.sh 
          terraform/                 # Infrastructure as Code
  ‚             modules/
  ‚     ‚             eks/              # EKS cluster configuration
  ‚     ‚             networking/       # VPC, subnets, security groups
  ‚     ‚             storage/          # S3/GCS bucket configuration
  ‚     ‚             monitoring/       # CloudWatch/Stackdriver setup
  ‚             environments/
  ‚                 dev/
  ‚                 prod/
          helm/                      # Helm charts
  ‚             presto/               # Presto/Trino cluster
  ‚             clickhouse/           # ClickHouse cluster
  ‚             spark-operator/       # Spark operator
  ‚             kafka/                # Kafka for data ingestion
  ‚             minio/                # MinIO object storage
  ‚             monitoring/           # Prometheus, Grafana, ELK
          benchmarks/               # Performance testing
  ‚             tpch/                 # TPC-H benchmark scripts
  ‚             tpcds/                # TPC-DS benchmark scripts
  ‚             data-generator/       # Synthetic data generation
  ‚             results/              # Benchmark results
          fault-tests/              # Chaos engineering
  ‚             chaos-mesh/           # Chaos Mesh experiments
  ‚             litmus/               # Litmus chaos experiments
  ‚             recovery-tests/       # Recovery time testing
          .github/workflows/        # CI/CD pipelines
  ‚             terraform.yml         # Infrastructure deployment
  ‚             helm-deploy.yml       # Application deployment
  ‚             benchmarks.yml        # Automated benchmarking
          docs/                     # Documentation
              architecture.md       # Detailed architecture
              deployment.md         # Deployment guide
              troubleshooting.md    # Troubleshooting guide
- Query Latency: 40% reduction through optimization
 - Recovery Time: 35% improvement in failover procedures
 - Throughput: Support 10TB+ analytical workloads
 - Availability: 99.9% uptime with fault tolerance
 
Each query engine is optimized for:
- Presto/Trino: Memory management, connector optimization
 - ClickHouse: Merge tree settings, compression ratios
 - Spark: Executor memory, shuffle optimization
 
- Horizontal Pod Autoscaler (HPA) for query engines
 - Vertical Pod Autoscaler (VPA) for resource optimization
 - Cluster autoscaling for node pools
 
- Query performance metrics
 - Resource utilization
 - Error rates and SLAs
 - Throughput and latency trends
 
- Query timeout alerts
 - Resource exhaustion warnings
 - SLA violation notifications
 - Cluster health status
 
- TPC-H queries (1GB to 10TB scale)
 - TPC-DS workload simulation
 - Custom analytical queries
 
- Pod restart scenarios
 - Node failure simulation
 - Network latency injection
 - Storage failure testing
 
- Fork the repository
 - Create a feature branch
 - Make your changes
 - Add tests and documentation
 - Submit a pull request
 
MIT License - see LICENSE file for details