[lldb] Unwind through ARM Cortex-M exceptions automatically (#153922) #11363
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
When a processor faults/is interrupted/gets an exception, it will stop running code and jump to an exception catcher routine. Most processors will store the pc that was executing in a system register, and the catcher functions have special instructions to retrieve that & possibly other registers. It may then save those values to stack, and the author can add .cfi directives to tell lldb's unwinder where to find those saved values.
ARM Cortex-M (microcontroller) processors have a simpler mechanism where a fixed set of registers are saved to the stack on an exception, and a unique value is put in the link register to indicate to the caller that this has taken place. No special handling needs to be written into the exception catcher, unless it wants to inspect these preserved values. And it is possible for a general stack walker to walk the stack with no special knowledge about what the catch function does.
This patch adds an Architecture plugin method to allow an Architecture to override/augment the UnwindPlan that lldb would use for a stack frame, given the contents of the return address register. It resembles a feature where the LanguageRuntime can replace/augment the unwind plan for a function, but it is doing it at offset by one level. The LanguageRuntime is looking at the local register context and/or symbol name to decide if it will override the unwind rules. For the Cortex-M exception unwinds, we need to modify THIS frame's unwind plan if the CALLER's LR had a specific value. RegisterContextUnwind has to retrieve the caller's LR value before it has completely decided on the UnwindPlan it will use for THIS stack frame.
This does mean that we will need one additional read of stack memory than we currently do when unwinding, on Armv7 Cortex-M targets. The unwinder walks the stack lazily, as stack frames are requested, and so now if you ask for 2 stack frames, we will read enough stack to walk 2 frames, plus we will read one extra word of memory, the spilled LR value from the stack. In practice, with 512-byte memory cache reads, this is unlikely to be a real performance hit.
This PR includes a test with a yaml corefile description and a JSON ObjectFile, incorporating all of the necessary stack memory and symbol names from a real debug session I worked on. The architectural default unwind plans are used for all stack frames except the 0th because there's no instructions for the functions, and no unwind info. I may need to add an encoding of unwind fules to ObjectFileJSON in the future as we create more test cases like this.
This PR depends on the yaml2macho-core utility from llvm#153911 to run its API test.
rdar://110663219
(cherry picked from commit 69511ae)