A proof assistant for the proof system in the textbook "Understanding Symbolic Logic Fifth Edition"
If you enter the following lines one by one:
pr ~((Ex)~Fx&(Ex)(Gx&~Hx))
pr (x)Hx>~(Ex)(Zx&Wx)
pr ~(x)(Wx>Fx)
aspcp ~(Ex)~Zx
qn 4 (x)Zx
cqn 3 (Ex)(Wx&~Fx)
ei 6 Wa&~Fa
simp 7 Wa
simp 7 ~Fa
ui 5 Za
conj 10 8 Za&Wa
eg 11 (Ex)(Zx&Wx)
dn 12 ~~(Ex)(Zx&Wx)
mt 2 13
dem 1
eg 9 (Ex)~Fx
dn 16 ~~(Ex)~Fx
ds 15 17
cqn 18 (x)(Gx>Hx)
qn 14 (Ex)~Hx
ei 20 ~Hb
ui 19 Gb>Hb
mt 21 22
eg 23 (Ex)~Gx
qn 24 ~(x)Gx
cp
Then you will have built the following proof:
1. ~((∃x)~Fx·(∃x)(Gx·~Hx)) Pr.
2. (x)Hx⊃~(∃x)(Zx·Wx) Pr.
3. ~(x)(Wx⊃Fx) Pr.
4. ┌ ~(∃x)~Zx Assp. (C.P.)
5. │ (x)Zx Q.N.4
6. │ (∃x)(Wx·~Fx) C.Q.N.3
7. │ Wa·~Fa E.I.6 (flag a)
8. │ Wa Simp.7
9. │ ~Fa Simp.7
10. │ Za U.I.5
11. │ Za·Wa Conj.10,8
12. │ (∃x)(Zx·Wx) E.G.11
13. │ ~~(∃x)(Zx·Wx) D.N.12
14. │ ~(x)Hx M.T.2,13
15. │ ~(∃x)~Fx∨~(∃x)(Gx·~Hx) DeM.1
16. │ (∃x)~Fx E.G.9
17. │ ~~(∃x)~Fx D.N.16
18. │ ~(∃x)(Gx·~Hx) D.S.15,17
19. │ (x)(Gx⊃Hx) C.Q.N.18
20. │ (∃x)~Hx Q.N.14
21. │ ~Hb E.I.20 (flag b)
22. │ Gb⊃Hb U.I.19
23. │ ~Gb M.T.21,22
24. │ (∃x)~Gx E.G.23
25. │ ~(x)Gx Q.N.24
└─────
26. ~(∃x)~Zx⊃~(x)Gx C.P.4-25