Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion tensorflow_addons/layers/wrappers.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,6 @@ def build(self, input_shape):

super(WeightNormalization, self).build()

@tf.function
def call(self, inputs):
"""Call `Layer`"""
if not self._initialized:
Expand Down Expand Up @@ -131,6 +130,7 @@ def _init_norm(self):
self.g.assign(
tf.reshape(tf.linalg.norm(flat, axis=0), (self.layer_depth,)))

# TODO: Get data init to work with tf_function compile #428
def _data_dep_init(self, inputs):
"""Data dependent initialization."""

Expand Down
8 changes: 6 additions & 2 deletions tensorflow_addons/layers/wrappers_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,14 +26,16 @@

@test_utils.run_all_in_graph_and_eager_modes
class WeightNormalizationTest(tf.test.TestCase):
# TODO: Get data init to work with tf_function compile #428
def test_weightnorm_dense_train(self):
model = tf.keras.models.Sequential()
model.add(
wrappers.WeightNormalization(
tf.keras.layers.Dense(2), input_shape=(3, 4)))
model.compile(
optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.001),
loss='mse')
loss='mse',
experimental_run_tf_function=False)
model.fit(
np.random.random((10, 3, 4)),
np.random.random((10, 3, 2)),
Expand All @@ -58,6 +60,7 @@ def test_weightnorm_dense_train_notinit(self):
self.assertTrue(hasattr(model.layers[0], 'g'))

def test_weightnorm_conv2d(self):
# TODO: Get data init to work with tf_function compile #428
model = tf.keras.models.Sequential()
model.add(
wrappers.WeightNormalization(
Expand All @@ -67,7 +70,8 @@ def test_weightnorm_conv2d(self):
model.add(tf.keras.layers.Activation('relu'))
model.compile(
optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.001),
loss='mse')
loss='mse',
experimental_run_tf_function=False)
model.fit(
np.random.random((2, 4, 4, 3)),
np.random.random((2, 4, 4, 5)),
Expand Down