Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions tfjs-core/scripts/touch_modular_op_files.ts
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,11 @@ async function main() {
let command = `touch ${filePath}`;
execSync(command);

// create a test file
filePath = `./src/ops/${args.op}_test.ts`;
command = `touch ${filePath}`;
execSync(command);

if (args.chained) {
filePath = `./src/public/chained_ops/${args.op}.ts`;
command = `touch ${filePath}`;
Expand Down
122 changes: 122 additions & 0 deletions tfjs-core/src/ops/band_part.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/

import {Tensor} from '../tensor';
import {convertToTensor} from '../tensor_util_env';
import {TensorLike} from '../types';
import {assert} from '../util';

import {reshape, stack, unstack} from './array_ops';
import {greaterEqual} from './greater_equal';
import {lessEqual} from './less_equal';
import {logicalAnd, where} from './logical_ops';
import {op} from './operation';
import {sub} from './sub';
import {range, scalar, zeros} from './tensor_ops';

/**
* Copy a tensor setting everything outside a central band in each innermost
* matrix to zero.
*
* The band part is computed as follows: Assume input has `k` dimensions
* `[I, J, K, ..., M, N]`, then the output is a tensor with the same shape where
* `band[i, j, k, ..., m, n] = in_band(m, n) * input[i, j, k, ..., m, n]`.
* The indicator function
* `in_band(m, n) = (num_lower < 0 || (m-n) <= num_lower))`
* `&& (num_upper < 0 || (n-m) <= num_upper)`
*
* ```js
* const x = tf.tensor2d([[ 0, 1, 2, 3],
* [-1, 0, 1, 2],
* [-2, -1, 0, 1],
* [-3, -2, -1, 0]]);
* let y = tf.linalg.bandPart(x, 1, -1);
* y.print(); // [[ 0, 1, 2, 3],
* // [-1, 0, 1, 2],
* // [ 0, -1, 0, 1],
* // [ 0, 0 , -1, 0]]
* let z = tf.linalg.bandPart(x, 2, 1);
* z.print(); // [[ 0, 1, 0, 0],
* // [-1, 0, 1, 0],
* // [-2, -1, 0, 1],
* // [ 0, -2, -1, 0]]
* ```
*
* @param x Rank `k` tensor
* @param numLower Number of subdiagonals to keep.
* If negative, keep entire lower triangle.
* @param numUpper Number of subdiagonals to keep.
* If negative, keep entire upper triangle.
* @returns Rank `k` tensor of the same shape as input.
* The extracted banded tensor.
*/
/**
* @doc {heading:'Operations', subheading:'Linear Algebra', namespace:'linalg'}
*/
function bandPart_<T extends Tensor>(
a: T|TensorLike, numLower: number, numUpper: number): T {
assert(
numLower % 1 === 0,
() => `bandPart(): numLower must be an integer, got ${numLower}.`);
assert(
numUpper % 1 === 0,
() => `bandPart(): numUpper must be an integer, got ${numUpper}.`);

const $a = convertToTensor(a, 'a', 'bandPart');

assert(
$a.rank >= 2,
() => `bandPart(): Rank must be at least 2, got ${$a.rank}.`);

const shape = $a.shape;
const [M, N] = $a.shape.slice(-2);

if (!(numLower <= M)) {
throw new Error(
`bandPart(): numLower (${numLower})` +
` must not be greater than the number of rows (${M}).`);
}
if (!(numUpper <= N)) {
throw new Error(
`bandPart(): numUpper (${numUpper})` +
` must not be greater than the number of columns (${N}).`);
}

if (numLower < 0) {
numLower = M;
}
if (numUpper < 0) {
numUpper = N;
}

const i = reshape(range(0, M, 1, 'int32'), [-1, 1]);
const j = range(0, N, 1, 'int32');
const ij = sub(i, j);

const inBand = logicalAnd(
lessEqual(ij, scalar(+numLower, 'int32')),
greaterEqual(ij, scalar(-numUpper, 'int32')));

const zero = zeros([M, N], $a.dtype);

return reshape(
stack(unstack(reshape($a, [-1, M, N]))
.map(mat => where(inBand, mat, zero))),
shape) as T;
}

export const bandPart = op({bandPart_});
181 changes: 181 additions & 0 deletions tfjs-core/src/ops/band_part_test.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/

import * as tf from '../index';
import {ALL_ENVS, describeWithFlags} from '../jasmine_util';
import {Tensor2D, Tensor3D} from '../tensor';
import {expectArraysClose} from '../test_util';

import {scalar, tensor1d, tensor2d, tensor3d} from './ops';

describeWithFlags('bandPart', ALL_ENVS, () => {
it('keeps tensor unchanged', async () => {
const x: Tensor2D = tensor2d([1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 3]);
expectArraysClose(
await tf.linalg.bandPart(x, -1, -1).array(),
[[1, 1, 1], [1, 1, 1], [1, 1, 1]]);
});

it('upper triangular matrix', async () => {
const x: Tensor2D = tensor2d([1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 3]);
expectArraysClose(
await tf.linalg.bandPart(x, 0, -1).array(),
[[1, 1, 1], [0, 1, 1], [0, 0, 1]]);
});

it('lower triangular matrix', async () => {
const x: Tensor2D = tensor2d([1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 3]);
expectArraysClose(
await tf.linalg.bandPart(x, -1, 0).array(),
[[1, 0, 0], [1, 1, 0], [1, 1, 1]]);
});

it('diagonal elements', async () => {
const x: Tensor2D = tensor2d([1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 3]);
expectArraysClose(
await tf.linalg.bandPart(x, 0, 0).array(),
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]);
});

it('lower triangular elements', async () => {
const x: Tensor2D = tensor2d([1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 3]);
expectArraysClose(
await tf.linalg.bandPart(x, 1, 0).array(),
[[1, 0, 0], [1, 1, 0], [0, 1, 1]]);
});

it('upper triangular elements', async () => {
const x: Tensor2D = tensor2d([1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 3]);
expectArraysClose(
await tf.linalg.bandPart(x, 0, 1).array(),
[[1, 1, 0], [0, 1, 1], [0, 0, 1]]);
});

it('4X4 matrix - tensorflow python examples', async () => {
const x: Tensor2D = tensor2d(
[[0, 1, 2, 3], [-1, 0, 1, 2], [-2, -1, 0, 1], [-3, -2, -1, 0]]);
expectArraysClose(
await tf.linalg.bandPart(x, 1, -1).array(),
[[0, 1, 2, 3], [-1, 0, 1, 2], [0, -1, 0, 1], [0, 0, -1, 0]]);
expectArraysClose(
await tf.linalg.bandPart(x, 2, 1).array(),
[[0, 1, 0, 0], [-1, 0, 1, 0], [-2, -1, 0, 1], [0, -2, -1, 0]]);
});

it('3 dimensional matrix', async () => {
const x: Tensor3D = tensor3d([[[1, 1], [1, 1]], [[1, 1], [1, 1]]]);
expectArraysClose(
await tf.linalg.bandPart(x, 0, 0).array(),
[[[1, 0], [0, 1]], [[1, 0], [0, 1]]]);
});

it('2X3X3 tensor', async () => {
const x: Tensor3D = tensor3d(
[[[1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1]]]);
expectArraysClose(
await tf.linalg.bandPart(x, 1, 2).array(),
[[[1, 1, 1], [1, 1, 1], [0, 1, 1]], [[1, 1, 1], [1, 1, 1], [0, 1, 1]]]);
});

const la = tf.linalg;

it('fails for scalar', async () => {
const x = scalar(1);
expect(() => la.bandPart(x, 1, 2)).toThrowError(/bandPart.*rank/i);
});

it('fails for 1D tensor', async () => {
const x = tensor1d([1, 2, 3, 4, 5]);
expect(() => la.bandPart(x, 1, 2)).toThrowError(/bandPart.*rank/i);
});

it('fails if numLower or numUpper too large', async () => {
const a = tf.tensor2d([[1, 2, 3], [4, 5, 6]]);

for (const numLower of [3, 5, 8, 13]) {
for (const numUpper of [-1, 0, 1, 2]) {
expect(() => tf.linalg.bandPart(a, numLower, numUpper))
.toThrowError(/bandPart.*numLower/i);
}
}

for (const numLower of [-1, 0, 1]) {
for (const numUpper of [4, 5, 9]) {
expect(() => tf.linalg.bandPart(a, numLower, numUpper))
.toThrowError(/bandPart.*numUpper/i);
}
}

for (const numLower of [3, 5, 8, 13]) {
for (const numUpper of [4, 5, 9]) {
expect(() => tf.linalg.bandPart(a, numLower, numUpper))
.toThrowError(/bandPart.*(numLower|numUpper)/i);
}
}
});

it('works for 3x4 example', async () => {
const a = tf.tensor2d([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]);

expectArraysClose(
await la.bandPart(a, 0, 0).array(),
[[1, 0, 0, 0], [0, 6, 0, 0], [0, 0, 11, 0]]);
expectArraysClose(
await la.bandPart(a, 0, 1).array(),
[[1, 2, 0, 0], [0, 6, 7, 0], [0, 0, 11, 12]]);
expectArraysClose(
await la.bandPart(a, 0, 2).array(),
[[1, 2, 3, 0], [0, 6, 7, 8], [0, 0, 11, 12]]);
for (const numUpper of [3, 4, -1, -2]) {
expectArraysClose(
await la.bandPart(a, 0, numUpper).array(),
[[1, 2, 3, 4], [0, 6, 7, 8], [0, 0, 11, 12]]);
}

expectArraysClose(
await la.bandPart(a, 1, 0).array(),
[[1, 0, 0, 0], [5, 6, 0, 0], [0, 10, 11, 0]]);
expectArraysClose(
await la.bandPart(a, 1, 1).array(),
[[1, 2, 0, 0], [5, 6, 7, 0], [0, 10, 11, 12]]);
expectArraysClose(
await la.bandPart(a, 1, 2).array(),
[[1, 2, 3, 0], [5, 6, 7, 8], [0, 10, 11, 12]]);
for (const numUpper of [3, 4, -1, -2]) {
expectArraysClose(
await la.bandPart(a, 1, numUpper).array(),
[[1, 2, 3, 4], [5, 6, 7, 8], [0, 10, 11, 12]]);
}

for (const numLower of [2, 3, -1, -2]) {
expectArraysClose(
await la.bandPart(a, numLower, 0).array(),
[[1, 0, 0, 0], [5, 6, 0, 0], [9, 10, 11, 0]]);
expectArraysClose(
await la.bandPart(a, numLower, 1).array(),
[[1, 2, 0, 0], [5, 6, 7, 0], [9, 10, 11, 12]]);
expectArraysClose(
await la.bandPart(a, numLower, 2).array(),
[[1, 2, 3, 0], [5, 6, 7, 8], [9, 10, 11, 12]]);
for (const numUpper of [3, 4, -1, -2]) {
expectArraysClose(
await la.bandPart(a, numLower, numUpper).array(),
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]);
}
}
});
});
Loading