Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 41 additions & 0 deletions tfjs-backend-webgl/src/webgl_topixels_test.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/

import * as tf from '@tensorflow/tfjs-core';
// tslint:disable-next-line: no-imports-from-dist
import {describeWithFlags} from '@tensorflow/tfjs-core/dist/jasmine_util';

import {WebGLMemoryInfo} from './backend_webgl';
import {WEBGL_ENVS} from './backend_webgl_test_registry';

describeWithFlags('toPixels', WEBGL_ENVS, () => {
it('does not leak memory', async () => {
const x = tf.tensor2d([[.1], [.2]], [2, 1]);
const startNumBytesInGPU = (tf.memory() as WebGLMemoryInfo).numBytesInGPU;
await tf.browser.toPixels(x);
expect((tf.memory() as WebGLMemoryInfo).numBytesInGPU)
.toEqual(startNumBytesInGPU);
});

it('does not leak memory given a tensor-like object', async () => {
const x = [[10], [20]]; // 2x1;
const startNumBytesInGPU = (tf.memory() as WebGLMemoryInfo).numBytesInGPU;
await tf.browser.toPixels(x);
expect((tf.memory() as WebGLMemoryInfo).numBytesInGPU)
.toEqual(startNumBytesInGPU);
});
});
78 changes: 33 additions & 45 deletions tfjs-core/src/ops/browser.ts
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,6 @@ import {convertToTensor} from '../tensor_util_env';
import {PixelData, TensorLike} from '../types';

import {cast} from './cast';
import {max} from './max';
import {min} from './min';
import {op} from './operation';
import {tensor3d} from './tensor3d';

Expand Down Expand Up @@ -196,60 +194,50 @@ export async function toPixels(
`1, 3 or 4 but got ${depth}`);
}

const data = await $img.data();
const minTensor = min($img);
const maxTensor = max($img);
const vals = await Promise.all([minTensor.data(), maxTensor.data()]);
const minVals = vals[0];
const maxVals = vals[1];
const minVal = minVals[0];
const maxVal = maxVals[0];
minTensor.dispose();
maxTensor.dispose();
if ($img.dtype === 'float32') {
if (minVal < 0 || maxVal > 1) {
throw new Error(
`Tensor values for a float32 Tensor must be in the ` +
`range [0 - 1] but got range [${minVal} - ${maxVal}].`);
}
} else if ($img.dtype === 'int32') {
if (minVal < 0 || maxVal > 255) {
throw new Error(
`Tensor values for a int32 Tensor must be in the ` +
`range [0 - 255] but got range [${minVal} - ${maxVal}].`);
}
} else {
if ($img.dtype !== 'float32' && $img.dtype !== 'int32') {
throw new Error(
`Unsupported type for toPixels: ${$img.dtype}.` +
` Please use float32 or int32 tensors.`);
}

const data = await $img.data();
const multiplier = $img.dtype === 'float32' ? 255 : 1;
const bytes = new Uint8ClampedArray(width * height * 4);

for (let i = 0; i < height * width; ++i) {
let r, g, b, a;
if (depth === 1) {
r = data[i] * multiplier;
g = data[i] * multiplier;
b = data[i] * multiplier;
a = 255;
} else if (depth === 3) {
r = data[i * 3] * multiplier;
g = data[i * 3 + 1] * multiplier;
b = data[i * 3 + 2] * multiplier;
a = 255;
} else if (depth === 4) {
r = data[i * 4] * multiplier;
g = data[i * 4 + 1] * multiplier;
b = data[i * 4 + 2] * multiplier;
a = data[i * 4 + 3] * multiplier;
const rgba = [0, 0, 0, 255];

for (let d = 0; d < depth; d++) {
const value = data[i * depth + d];

if ($img.dtype === 'float32') {
if (value < 0 || value > 1) {
throw new Error(
`Tensor values for a float32 Tensor must be in the ` +
`range [0 - 1] but encountered ${value}.`);
}
} else if ($img.dtype === 'int32') {
if (value < 0 || value > 255) {
throw new Error(
`Tensor values for a int32 Tensor must be in the ` +
`range [0 - 255] but encountered ${value}.`);
}
}

if (depth === 1) {
rgba[0] = value * multiplier;
rgba[1] = value * multiplier;
rgba[2] = value * multiplier;
} else {
rgba[d] = value * multiplier;
}
}

const j = i * 4;
bytes[j + 0] = Math.round(r);
bytes[j + 1] = Math.round(g);
bytes[j + 2] = Math.round(b);
bytes[j + 3] = Math.round(a);
bytes[j + 0] = Math.round(rgba[0]);
bytes[j + 1] = Math.round(rgba[1]);
bytes[j + 2] = Math.round(rgba[2]);
bytes[j + 3] = Math.round(rgba[3]);
}

if (canvas != null) {
Expand Down