Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 1 addition & 4 deletions example/tutorial_tfrecord3.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,15 +15,12 @@

"""

import io
import json
import os
import time
import numpy as np
import tensorflow as tf
import tensorlayer as tl
from PIL import Image
from tensorlayer.layers import set_keep


def _int64_feature(value):
Expand Down Expand Up @@ -326,7 +323,7 @@ def prefetch_input_data(reader,
try:
# for TensorFlow 0.11
img = tf.image.resize_images(img, size=(resize_height, resize_width), method=tf.image.ResizeMethod.BILINEAR)
except:
except Exception:
# for TensorFlow 0.10
img = tf.image.resize_images(img, new_height=resize_height, new_width=resize_width, method=tf.image.ResizeMethod.BILINEAR)
# Crop to final dimensions.
Expand Down
6 changes: 3 additions & 3 deletions tensorlayer/layers/convolution.py
Original file line number Diff line number Diff line change
Expand Up @@ -834,9 +834,9 @@ def _tf_batch_map_offsets(inputs, offsets, grid_offset):
offset_params = [osparam for osparam in offset_layer.all_params if osparam not in layer.all_params]
offset_layers = [oslayer for oslayer in offset_layer.all_layers if oslayer not in layer.all_layers]

self.all_params.extend(offset_params)
self.all_layers.extend(offset_layers)
self.all_drop.update(offset_layer.all_drop)
self.all_params.extend(list(offset_params))
self.all_layers.extend(list(offset_layers))
self.all_drop.update(dict(offset_layer.all_drop))

# this layer
self.all_layers.extend([self.outputs])
Expand Down
8 changes: 5 additions & 3 deletions tensorlayer/prepro.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,8 +100,10 @@ def apply_fn(results, i, data, kwargs):
if thread_count is None:
results = [None] * len(data)
threads = []
for i in range(len(data)):
t = threading.Thread(name='threading_and_return', target=apply_fn, args=(results, i, data[i], kwargs))
# for i in range(len(data)):
# t = threading.Thread(name='threading_and_return', target=apply_fn, args=(results, i, data[i], kwargs))
for i, d in enumerate(data):
t = threading.Thread(name='threading_and_return', target=apply_fn, args=(results, i, d, kwargs))
t.start()
threads.append(t)
else:
Expand All @@ -120,7 +122,7 @@ def apply_fn(results, i, data, kwargs):
if thread_count is None:
try:
return np.asarray(results)
except:
except Exception:
return results
else:
return np.concatenate(results)
Expand Down
11 changes: 7 additions & 4 deletions tensorlayer/rein.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from six.moves import xrange


def discount_episode_rewards(rewards=[], gamma=0.99, mode=0):
def discount_episode_rewards(rewards=None, gamma=0.99, mode=0):
"""Take 1D float array of rewards and compute discounted rewards for an
episode. When encount a non-zero value, consider as the end a of an episode.

Expand Down Expand Up @@ -40,6 +40,8 @@ def discount_episode_rewards(rewards=[], gamma=0.99, mode=0):
... 1.49048996 1.65610003 0.72899997 0.81 0.89999998 1. ]

"""
if rewards is None:
raise Exception("rewards should be a list")
discounted_r = np.zeros_like(rewards, dtype=np.float32)
running_add = 0
for t in reversed(xrange(0, rewards.size)):
Expand Down Expand Up @@ -84,13 +86,13 @@ def cross_entropy_reward_loss(logits, actions, rewards, name=None):
"""
try: # TF 1.0+
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=actions, logits=logits, name=name)
except:
except Exception:
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, targets=actions)
# cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, actions)

try: ## TF1.0+
loss = tf.reduce_sum(tf.multiply(cross_entropy, rewards))
except: ## TF0.12
except Exception: ## TF0.12
loss = tf.reduce_sum(tf.mul(cross_entropy, rewards)) # element-wise mul
return loss

Expand Down Expand Up @@ -153,5 +155,6 @@ def choice_action_by_probs(probs=[0.5, 0.5], action_list=None):
n_action = len(probs)
action_list = np.arange(n_action)
else:
assert len(action_list) == len(probs), "Number of actions should equal to number of probabilities."
if len(action_list) != len(probs):
raise Exception("number of actions should equal to number of probabilities.")
return np.random.choice(action_list, p=probs)