Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions tensorlayer/layers/convolution.py
Original file line number Diff line number Diff line change
Expand Up @@ -508,7 +508,7 @@ def __init__(
else:
raise Exception("Donot support shape %s" % self.inputs.get_shape())
logging.info("UpSampling2dLayer %s: is_scale:%s size:%s method:%d align_corners:%s" % (name, is_scale, size, method, align_corners))
with tf.variable_scope(name) as vs:
with tf.variable_scope(name):
try:
self.outputs = tf.image.resize_images(self.inputs, size=size, method=method, align_corners=align_corners)
except Exception: # for TF 0.10
Expand Down Expand Up @@ -568,7 +568,7 @@ def __init__(
else:
raise Exception("Donot support shape %s" % self.inputs.get_shape())
logging.info("DownSampling2dLayer %s: is_scale:%s size:%s method:%d, align_corners:%s" % (name, is_scale, size, method, align_corners))
with tf.variable_scope(name) as vs:
with tf.variable_scope(name):
try:
self.outputs = tf.image.resize_images(self.inputs, size=size, method=method, align_corners=align_corners)
except Exception: # for TF 0.10
Expand Down Expand Up @@ -797,7 +797,7 @@ def _tf_batch_map_offsets(inputs, offsets, grid_offset):
logging.info("[warnings] unknow input channels, set to 1")
shape = (filter_size[0], filter_size[1], pre_channel, n_filter)

with tf.variable_scope(name) as vs:
with tf.variable_scope(name):
offset = self.offset_layer.outputs
assert offset.get_shape()[-1] == 2 * shape[0] * shape[1]

Expand Down Expand Up @@ -987,7 +987,7 @@ def __init__(self,
if act is None:
act = tf.identity
logging.info("AtrousConv2dLayer %s: n_filter:%d filter_size:%s rate:%d pad:%s act:%s" % (self.name, n_filter, filter_size, rate, padding, act.__name__))
with tf.variable_scope(name) as vs:
with tf.variable_scope(name):
shape = [filter_size[0], filter_size[1], int(self.inputs.get_shape()[-1]), n_filter]
filters = tf.get_variable(name='filter', shape=shape, initializer=W_init, dtype=D_TYPE, **W_init_args)
if b_init:
Expand Down Expand Up @@ -1627,7 +1627,7 @@ def __init__(

assert len(strides) == 4, "len(strides) should be 4."

with tf.variable_scope(name) as vs:
with tf.variable_scope(name):
W = tf.get_variable(
name='W_sepconv2d', shape=shape, initializer=W_init, dtype=D_TYPE,
**W_init_args) # [filter_height, filter_width, in_channels, channel_multiplier]
Expand Down
4 changes: 2 additions & 2 deletions tensorlayer/layers/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -1323,10 +1323,10 @@ def __init__(
self.n_units = n_units
logging.info("DropconnectDenseLayer %s: %d %s" % (self.name, self.n_units, act.__name__))

with tf.variable_scope(name) as vs:
with tf.variable_scope(name):
W = tf.get_variable(name='W', shape=(n_in, n_units), initializer=W_init, dtype=D_TYPE, **W_init_args)
b = tf.get_variable(name='b', shape=(n_units), initializer=b_init, dtype=D_TYPE, **b_init_args)
self.outputs = act(tf.matmul(self.inputs, W) + b) #, name=name) # 1.2
self.outputs = act(tf.matmul(self.inputs, W) + b)

set_keep[name] = tf.placeholder(tf.float32)
W_dropcon = tf.nn.dropout(W, set_keep[name])
Expand Down
11 changes: 7 additions & 4 deletions tensorlayer/layers/recurrent.py
Original file line number Diff line number Diff line change
Expand Up @@ -1062,7 +1062,7 @@ def __init__(

# Apply dropout
if dropout:
if type(dropout) in [tuple, list]:
if isinstance(dropout, (tuple, list)):
in_keep_prob = dropout[0]
out_keep_prob = dropout[1]
elif isinstance(dropout, float):
Expand Down Expand Up @@ -1311,7 +1311,7 @@ def __init__(

# Apply dropout
if dropout:
if type(dropout) in [tuple, list]:
if isinstance(dropout, (tuple, list)):
in_keep_prob = dropout[0]
out_keep_prob = dropout[1]
elif isinstance(dropout, float):
Expand Down Expand Up @@ -1445,7 +1445,7 @@ class Seq2Seq(Layer):
A TensorFlow core RNN cell
- see `RNN Cells in TensorFlow <https://www.tensorflow.org/api_docs/python/>`__
- Note TF1.0+ and TF1.0- are different
cell_init_args : dictionary
cell_init_args : dictionary or None
The arguments for the cell initializer.
n_hidden : int
The number of hidden units in the layer.
Expand Down Expand Up @@ -1540,7 +1540,7 @@ def __init__(
net_encode_in,
net_decode_in,
cell_fn, #tf.nn.rnn_cell.LSTMCell,
cell_init_args={'state_is_tuple': True},
cell_init_args=None,
n_hidden=256,
initializer=tf.random_uniform_initializer(-0.1, 0.1),
encode_sequence_length=None,
Expand All @@ -1552,6 +1552,9 @@ def __init__(
return_seq_2d=False,
name='seq2seq',
):
if cell_init_args is None:
cell_init_args = {'state_is_tuple': True}

Layer.__init__(self, name=name)
if cell_fn is None:
raise Exception("Please put in cell_fn")
Expand Down
8 changes: 4 additions & 4 deletions tensorlayer/prepro.py
Original file line number Diff line number Diff line change
Expand Up @@ -2651,7 +2651,7 @@ def _get_coord(coord):

coords_new = list()
classes_new = list()
for i in range(len(coords)):
for i, _ in enumerate(coords):
coord = coords[i]
assert len(coord) == 4, "coordinate should be 4 values : [x, y, w, h]"
if is_rescale:
Expand Down Expand Up @@ -2794,7 +2794,7 @@ def _get_coord(coord):

coords_new = list()
classes_new = list()
for i in range(len(coords)):
for i, _ in enumerate(coords):
coord = coords[i]
assert len(coord) == 4, "coordinate should be 4 values : [x, y, w, h]"
if is_rescale:
Expand Down Expand Up @@ -3010,7 +3010,7 @@ def sequences_add_start_id(sequences, start_id=0, remove_last=False):

"""
sequences_out = [[] for _ in range(len(sequences))] #[[]] * len(sequences)
for i in range(len(sequences)):
for i, _ in enumerate(sequences):
if remove_last:
sequences_out[i] = [start_id] + sequences[i][:-1]
else:
Expand Down Expand Up @@ -3041,7 +3041,7 @@ def sequences_add_end_id(sequences, end_id=888):

"""
sequences_out = [[] for _ in range(len(sequences))] #[[]] * len(sequences)
for i in range(len(sequences)):
for i, _ in enumerate(sequences):
sequences_out[i] = sequences[i] + [end_id]
return sequences_out

Expand Down