Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 34 additions & 26 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -125,30 +125,40 @@ Examples can be found [in this folder](https://github.com/zsdonghao/tensorlayer/

## Basics
- Multi-layer perceptron (MNIST) - Classification task, see [tutorial\_mnist\_simple.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_simple.py).
- Multi-layer perceptron (MNIST) - Classification using Iterator, see [method1](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py) and [method2](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout2.py).


## Computer Vision
- Multi-layer perceptron (MNIST) - Classification with dropout using iterator, see [method1](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py) (**use placeholder**) and [method2](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout2.py) (**use reuse**).
- Denoising Autoencoder (MNIST). Classification task, see [tutorial_mnist.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py).
- Stacked Denoising Autoencoder and Fine-Tuning (MNIST). Classification task, see [tutorial_mnist.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py).
- Convolutional Network (MNIST). Classification task, see [tutorial_mnist.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py).
- Convolutional Network (CIFAR-10). Classification task, see [tutorial\_cifar10.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10.py) and [tutorial\_cifar10_tfrecord.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py).
- VGG 16 (ImageNet). Classification task, see [tl.models.VGG16](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_models_vgg16.py) or [tutorial_vgg16.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg16.py).
- VGG 19 (ImageNet). Classification task, see [tutorial_vgg19.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg19.py).
- InceptionV3 (ImageNet). Classification task, see [tutorial\_inceptionV3_tfslim.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py).
- SqueezeNet (ImageNet). Model compression, see [tl.models.SqueezeNetV1](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_models_squeezenetv1.py) or [tutorial_squeezenet.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_squeezenet.py)
- MobileNet (ImageNet). Model compression, see [tl.models.MobileNetV1](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_models_mobilenetv1.py) or [tutorial_mobilenet.py](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mobilenet.py).
- BinaryNet. Model compression, see [mnist](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_binarynet_mnist_cnn.py) [cifar10](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_binarynet_cifar10_tfrecord.py).
- Ternary Weight Network. Model compression, see [mnist](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ternaryweight_mnist_cnn.py) [cifar10](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ternaryweight_cifar10_tfrecord.py).
- DoReFa-Net. Model compression, see [mnist](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_dorefanet_mnist_cnn.py) [cifar10](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_dorefanet_cifar10_tfrecord.py).
- TensorFlow dataset API for object detection see [here](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_tf_dataset_voc.py).
- Merge TF-Slim into TensorLayer. [tutorial\_inceptionV3_tfslim.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py).
- Merge Keras into TensorLayer. [tutorial_keras.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_keras.py).
- Data augmentation with TFRecord. Effective way to load and pre-process data, see [tutorial_tfrecord*.py](https://github.com/zsdonghao/tensorlayer/tree/master/example) and [tutorial\_cifar10_tfrecord.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py).
- Data augmentation with TensorLayer, see [tutorial\_image_preprocess.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_image_preprocess.py).
- Float 16 half-precision model, see [tutorial\_mnist_float16.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_float16.py)
- Distributed Training. [mnist](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_distributed.py) and [imagenet](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_imagenet_inceptionV3_distributed.py) by [jorgemf](https://github.com/jorgemf).

## Vision
- ArcFace: Additive Angular Margin Loss for Deep Face Recognition, see [InsignFace](https://github.com/auroua/InsightFace_TF).
- BinaryNet. Model acceleration, see [mnist](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_binarynet_mnist_cnn.py) [cifar10](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_binarynet_cifar10_tfrecord.py).
- Ternary Weight Network. Model acceleration, see [mnist](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ternaryweight_mnist_cnn.py) [cifar10](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ternaryweight_cifar10_tfrecord.py).
- DoReFa-Net. Model acceleration, see [mnist](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_dorefanet_mnist_cnn.py) [cifar10](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_dorefanet_cifar10_tfrecord.py).
- Wide ResNet (CIFAR) by [ritchieng](https://github.com/ritchieng/wideresnet-tensorlayer).
- More CNN implementations of [TF-Slim](https://github.com/tensorflow/models/tree/master/research/slim) can be connected to TensorLayer via SlimNetsLayer.
- [Spatial Transformer Networks](https://arxiv.org/abs/1506.02025) by [zsdonghao](https://github.com/zsdonghao/Spatial-Transformer-Nets).
- [U-Net for brain tumor segmentation](https://github.com/zsdonghao/u-net-brain-tumor) by [zsdonghao](https://github.com/zsdonghao/u-net-brain-tumor).
- Variational Autoencoder (VAE) for (CelebA) by [yzwxx](https://github.com/yzwxx/vae-celebA).
- Variational Autoencoder (VAE) for (MNIST) by [BUPTLdy](https://github.com/BUPTLdy/tl-vae).
- Image Captioning - Reimplementation of Google's [im2txt](https://github.com/tensorflow/models/tree/master/research/im2txt) by [zsdonghao](https://github.com/zsdonghao/Image-Captioning).


## Adversarial Learning
- DCGAN (CelebA). Generating images by [Deep Convolutional Generative Adversarial Networks](http://arxiv.org/abs/1511.06434) by [zsdonghao](https://github.com/zsdonghao/dcgan).
- [Generative Adversarial Text to Image Synthesis](https://github.com/zsdonghao/text-to-image) by [zsdonghao](https://github.com/zsdonghao/text-to-image).
- [Unsupervised Image to Image Translation with Generative Adversarial Networks](https://github.com/zsdonghao/Unsup-Im2Im) by [zsdonghao](https://github.com/zsdonghao/Unsup-Im2Im).
- [Improved CycleGAN](https://github.com/luoxier/CycleGAN_Tensorlayer) with resize-convolution by [luoxier](https://github.com/luoxier/CycleGAN_Tensorlayer)
- [Super Resolution GAN](https://arxiv.org/abs/1609.04802) by [zsdonghao](https://github.com/zsdonghao/SRGAN).
- [DAGAN: Fast Compressed Sensing MRI Reconstruction](https://github.com/nebulaV/DAGAN) by [nebulaV](https://github.com/nebulaV/DAGAN).

## Natural Language Processing
- Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see [tutorial_ptb_lstm.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_ptb_lstm.py) and [tutorial\_ptb\_lstm\_state\_is_tuple.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py).
- Word Embedding (Word2vec). Train a word embedding matrix, see [tutorial\_word2vec_basic.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial\_word2vec_basic.py).
Expand All @@ -158,13 +168,6 @@ Examples can be found [in this folder](https://github.com/zsdonghao/tensorlayer/
- [Chatbot in 200 lines of code](https://github.com/zsdonghao/seq2seq-chatbot) for [Seq2Seq](http://tensorlayer.readthedocs.io/en/latest/modules/layers.html#simple-seq2seq).
- FastText Sentence Classification (IMDB), see [tutorial\_imdb\_fasttext.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_imdb_fasttext.py) by [tomtung](https://github.com/tomtung).

## Adversarial Learning
- DCGAN (CelebA). Generating images by [Deep Convolutional Generative Adversarial Networks](http://arxiv.org/abs/1511.06434) by [zsdonghao](https://github.com/zsdonghao/dcgan).
- [Generative Adversarial Text to Image Synthesis](https://github.com/zsdonghao/text-to-image) by [zsdonghao](https://github.com/zsdonghao/text-to-image).
- [Unsupervised Image to Image Translation with Generative Adversarial Networks](https://github.com/zsdonghao/Unsup-Im2Im) by [zsdonghao](https://github.com/zsdonghao/Unsup-Im2Im).
- [Improved CycleGAN](https://github.com/luoxier/CycleGAN_Tensorlayer) with resize-convolution by [luoxier](https://github.com/luoxier/CycleGAN_Tensorlayer)
- [Super Resolution GAN](https://arxiv.org/abs/1609.04802) by [zsdonghao](https://github.com/zsdonghao/SRGAN).
- [DAGAN: Fast Compressed Sensing MRI Reconstruction](https://github.com/nebulaV/DAGAN) by [nebulaV](https://github.com/nebulaV/DAGAN).

## Reinforcement Learning
- Policy Gradient / Network (Atari Ping Pong), see [tutorial\_atari_pong.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_atari_pong.py).
Expand All @@ -176,15 +179,20 @@ Examples can be found [in this folder](https://github.com/zsdonghao/tensorlayer/
- [DAGGER](https://www.cs.cmu.edu/%7Esross1/publications/Ross-AIStats11-NoRegret.pdf) for ([Gym Torcs](https://github.com/ugo-nama-kun/gym_torcs)) by [zsdonghao](https://github.com/zsdonghao/Imitation-Learning-Dagger-Torcs).
- [TRPO](https://arxiv.org/abs/1502.05477) for continuous and discrete action space by [jjkke88](https://github.com/jjkke88/RL_toolbox).


## Pretrained Models
- VGG 16 (ImageNet). Classification task, see [tl.models.VGG16](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_models_vgg16.py) or [tutorial_vgg16.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg16.py).
- VGG 19 (ImageNet). Classification task, see [tutorial_vgg19.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg19.py).
- InceptionV3 (ImageNet). Classification task, see [tutorial\_inceptionV3_tfslim.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py).
- SqueezeNet (ImageNet). Model acceleration, see [tl.models.SqueezeNetV1](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_models_squeezenetv1.py) or [tutorial_squeezenet.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_squeezenet.py)
- MobileNet (ImageNet). Model acceleration, see [tl.models.MobileNetV1](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_models_mobilenetv1.py) or [tutorial_mobilenet.py](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mobilenet.py).
- More CNN implementations of [TF-Slim](https://github.com/tensorflow/models/tree/master/research/slim) can be connected to TensorLayer via SlimNetsLayer.
- All pretrained models in [here](https://github.com/tensorlayer/pretrained-models).

## Miscellaneous
- Distributed Training. [mnist](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_distributed.py) and [imagenet](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_imagenet_inceptionV3_distributed.py) by [jorgemf](https://github.com/jorgemf).
- Merge TF-Slim into TensorLayer. [tutorial\_inceptionV3_tfslim.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py).
- Merge Keras into TensorLayer. [tutorial_keras.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_keras.py).
- Data augmentation with TFRecord. Effective way to load and pre-process data, see [tutorial_tfrecord*.py](https://github.com/zsdonghao/tensorlayer/tree/master/example) and [tutorial\_cifar10_tfrecord.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py).
- Data augmentation with TensorLayer, see [tutorial\_image_preprocess.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_image_preprocess.py).
- TensorDB by [fangde](https://github.com/fangde) see [here](https://github.com/akaraspt/tl_paper).
- A simple web service - [TensorFlask](https://github.com/JoelKronander/TensorFlask) by [JoelKronander](https://github.com/JoelKronander).
- Float 16 half-precision model, see [tutorial\_mnist_float16.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_float16.py)


## Notes
TensorLayer provides two set of Convolutional layer APIs, see [(Advanced)](http://tensorlayer.readthedocs.io/en/latest/modules/layers.html#convolutional-layer-pro) and [(Basic)](http://tensorlayer.readthedocs.io/en/latest/modules/layers.html#convolutional-layer-simplified) on readthedocs website.
Expand Down
Loading