Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 51 additions & 50 deletions docs/user/example.rst
Original file line number Diff line number Diff line change
Expand Up @@ -7,82 +7,83 @@ Examples
Basics
============

- Multi-layer perceptron (MNIST). Classification task, see `tutorial_mnist_simple.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_simple.py>`_.
- Multi-layer perceptron (MNIST). Classification with dropout using iterator, see `method1 <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py>`_ (**use placeholder**) and `method2 <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout2.py>`_ (**use reuse**).
- Denoising Autoencoder (MNIST). Classification task, see `tutorial_mnist.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py>`_.
- Stacked Denoising Autoencoder and Fine-Tuning (MNIST). A MLP classification task, see `tutorial_mnist.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py>`_.
- Convolutional Network (MNIST). Classification task, see `tutorial_mnist.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py>`_.
- Convolutional Network (CIFAR-10). Classification task, see `tutorial_cifar10.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10.py>`_ and `tutorial_cifar10_tfrecord.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py>`_.
- TensorFlow dataset API for object detection see `here <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_tf_dataset_voc.py>`_.
- Merge TF-Slim into TensorLayer. `tutorial_inceptionV3_tfslim.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py>`_.
- Merge Keras into TensorLayer. `tutorial_keras.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_keras.py>`_.
- Data augmentation with TFRecord. Effective way to load and pre-process data, see `tutorial_tfrecord*.py <https://github.com/zsdonghao/tensorlayer/tree/master/example>`_ and `tutorial_cifar10_tfrecord.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py>`_.
- Data augmentation with TensorLayer, see `tutorial_image_preprocess.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_image_preprocess.py>`_.
- Float 16 half-precision model, see `tutorial_mnist_float16.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_float16.py>`_.
- Distributed Training. `mnist <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_distributed.py>`_ and `imagenet <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py>`_ by `jorgemf <https://github.com/jorgemf>`__.
- Multi-layer perceptron (MNIST). Classification task, see `tutorial_mnist_simple.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_simple.py>`__.
- Multi-layer perceptron (MNIST). Classification with dropout using iterator, see `method1 <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py>`__ (**use placeholder**) and `method2 <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout2.py>`__ (**use reuse**).
- Denoising Autoencoder (MNIST). Classification task, see `tutorial_mnist.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py>`__.
- Stacked Denoising Autoencoder and Fine-Tuning (MNIST). A MLP classification task, see `tutorial_mnist.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py>`__.
- Convolutional Network (MNIST). Classification task, see `tutorial_mnist.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py>`__.
- Convolutional Network (CIFAR-10). Classification task, see `tutorial_cifar10.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10.py>`_ and `tutorial_cifar10_tfrecord.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py>`__.
- TensorFlow dataset API for object detection see `here <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_tf_dataset_voc.py>`__.
- Merge TF-Slim into TensorLayer. `tutorial_inceptionV3_tfslim.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py>`__.
- Merge Keras into TensorLayer. `tutorial_keras.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_keras.py>`__.
- Data augmentation with TFRecord. Effective way to load and pre-process data, see `tutorial_tfrecord*.py <https://github.com/zsdonghao/tensorlayer/tree/master/example>`__ and `tutorial_cifar10_tfrecord.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py>`__.
- Data augmentation with TensorLayer, see `tutorial_image_preprocess.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_image_preprocess.py>`__.
- Float 16 half-precision model, see `tutorial_mnist_float16.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_float16.py>`__.
- Distributed Training. `mnist <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_distributed.py>`__ and `imagenet <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py>`__ by `jorgemf <https://github.com/jorgemf>`__.

Vision
==================

- ArcFace: Additive Angular Margin Loss for Deep Face Recognition, see `InsignFace <https://github.com/auroua/InsightFace_TF>`_.
- ArcFace: Additive Angular Margin Loss for Deep Face Recognition, see `InsignFace <https://github.com/auroua/InsightFace_TF>`__.
- BinaryNet. Model compression, see `mnist <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_binarynet_mnist_cnn.py>`__ `cifar10 <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_binarynet_cifar10_tfrecord.py>`__.
- Ternary Weight Network. Model compression, see `mnist <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ternaryweight_mnist_cnn.py>`__ `cifar10 <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_ternaryweight_cifar10_tfrecord.py>`__.
- DoReFa-Net. Model compression, see `mnist <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_dorefanet_mnist_cnn.py>`__ `cifar10 <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_dorefanet_cifar10_tfrecord.py>`__.
- Wide ResNet (CIFAR) by `ritchieng <https://github.com/ritchieng/wideresnet-tensorlayer>`_.
- `Spatial Transformer Networks <https://arxiv.org/abs/1506.02025>`_ by `zsdonghao <https://github.com/zsdonghao/Spatial-Transformer-Nets>`__.
- `U-Net for brain tumor segmentation <https://github.com/zsdonghao/u-net-brain-tumor>`_ by `zsdonghao <https://github.com/zsdonghao/u-net-brain-tumor>`__.
- Variational Autoencoder (VAE) for (CelebA) by `yzwxx <https://github.com/yzwxx/vae-celebA>`_.
- Variational Autoencoder (VAE) for (MNIST) by `BUPTLdy <https://github.com/BUPTLdy/tl-vae>`_.
- Image Captioning - Reimplementation of Google's `im2txt <https://github.com/tensorflow/models/tree/master/research/im2txt>`_ by `zsdonghao <https://github.com/zsdonghao/Image-Captioning>`__.
- Wide ResNet (CIFAR) by `ritchieng <https://github.com/ritchieng/wideresnet-tensorlayer>`__.
- `Spatial Transformer Networks <https://arxiv.org/abs/1506.02025>`__ by `zsdonghao <https://github.com/zsdonghao/Spatial-Transformer-Nets>`__.
- `U-Net for brain tumor segmentation <https://github.com/zsdonghao/u-net-brain-tumor>`__ by `zsdonghao <https://github.com/zsdonghao/u-net-brain-tumor>`__.
- Variational Autoencoder (VAE) for (CelebA) by `yzwxx <https://github.com/yzwxx/vae-celebA>`__.
- Variational Autoencoder (VAE) for (MNIST) by `BUPTLdy <https://github.com/BUPTLdy/tl-vae>`__.
- Image Captioning - Reimplementation of Google's `im2txt <https://github.com/tensorflow/models/tree/master/research/im2txt>`__ by `zsdonghao <https://github.com/zsdonghao/Image-Captioning>`__.

Adversarial Learning
========================
- DCGAN (CelebA). Generating images by `Deep Convolutional Generative Adversarial Networks <http://arxiv.org/abs/1511.06434>`_ by `zsdonghao <https://github.com/zsdonghao/dcgan>`__.
- `Generative Adversarial Text to Image Synthesis <https://github.com/zsdonghao/text-to-image>`_ by `zsdonghao <https://github.com/zsdonghao/text-to-image>`__.
- `Unsupervised Image to Image Translation with Generative Adversarial Networks <https://github.com/zsdonghao/Unsup-Im2Im>`_ by `zsdonghao <https://github.com/zsdonghao/Unsup-Im2Im>`__.
- `Improved CycleGAN <https://github.com/luoxier/CycleGAN_Tensorlayer>`_ with resize-convolution by `luoxier <https://github.com/luoxier/CycleGAN_Tensorlayer>`_.
- `Super Resolution GAN <https://arxiv.org/abs/1609.04802>`_ by `zsdonghao <https://github.com/zsdonghao/SRGAN>`__.
- `DAGAN: Fast Compressed Sensing MRI Reconstruction <https://github.com/nebulaV/DAGAN>`_ by `nebulaV <https://github.com/nebulaV/DAGAN>`__.
- DCGAN (CelebA). Generating images by `Deep Convolutional Generative Adversarial Networks <http://arxiv.org/abs/1511.06434>`__ by `zsdonghao <https://github.com/zsdonghao/dcgan>`__.
- `Generative Adversarial Text to Image Synthesis <https://github.com/zsdonghao/text-to-image>`__ by `zsdonghao <https://github.com/zsdonghao/text-to-image>`__.
- `Unsupervised Image to Image Translation with Generative Adversarial Networks <https://github.com/zsdonghao/Unsup-Im2Im>`__ by `zsdonghao <https://github.com/zsdonghao/Unsup-Im2Im>`__.
- `Improved CycleGAN <https://github.com/luoxier/CycleGAN_Tensorlayer>`__ with resize-convolution by `luoxier <https://github.com/luoxier/CycleGAN_Tensorlayer>`__.
- `Super Resolution GAN <https://arxiv.org/abs/1609.04802>`__ by `zsdonghao <https://github.com/zsdonghao/SRGAN>`__.
- `BEGAN: Boundary Equilibrium Generative Adversarial Networks <http://arxiv.org/abs/1703.10717>`__ by `2wins <https://github.com/2wins/BEGAN-tensorlayer>`__.
- `DAGAN: Fast Compressed Sensing MRI Reconstruction <https://github.com/nebulaV/DAGAN>`__ by `nebulaV <https://github.com/nebulaV/DAGAN>`__.

Natural Language Processing
==============================

- Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see `tutorial_ptb_lstm_state_is_tuple.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py>`_.
- Word Embedding (Word2vec). Train a word embedding matrix, see `tutorial_word2vec_basic.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial\_word2vec_basic.py>`_.
- Restore Embedding matrix. Restore a pre-train embedding matrix, see `tutorial_generate_text.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_generate_text.py>`_.
- Text Generation. Generates new text scripts, using LSTM network, see `tutorial_generate_text.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_generate_text.py>`_.
- Chinese Text Anti-Spam by `pakrchen <https://github.com/pakrchen/text-antispam>`_.
- `Chatbot in 200 lines of code <https://github.com/zsdonghao/seq2seq-chatbot>`_ for `Seq2Seq <http://tensorlayer.readthedocs.io/en/latest/modules/layers.html#simple-seq2seq>`_.
- FastText Sentence Classification (IMDB), see `tutorial_imdb_fasttext.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_imdb_fasttext.py>`_ by `tomtung <https://github.com/tomtung>`__.
- Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see `tutorial_ptb_lstm_state_is_tuple.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py>`__.
- Word Embedding (Word2vec). Train a word embedding matrix, see `tutorial_word2vec_basic.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial\_word2vec_basic.py>`__.
- Restore Embedding matrix. Restore a pre-train embedding matrix, see `tutorial_generate_text.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_generate_text.py>`__.
- Text Generation. Generates new text scripts, using LSTM network, see `tutorial_generate_text.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_generate_text.py>`__.
- Chinese Text Anti-Spam by `pakrchen <https://github.com/pakrchen/text-antispam>`__.
- `Chatbot in 200 lines of code <https://github.com/zsdonghao/seq2seq-chatbot>`__ for `Seq2Seq <http://tensorlayer.readthedocs.io/en/latest/modules/layers.html#simple-seq2seq>`__.
- FastText Sentence Classification (IMDB), see `tutorial_imdb_fasttext.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_imdb_fasttext.py>`__ by `tomtung <https://github.com/tomtung>`__.

Reinforcement Learning
==============================

- Policy Gradient / Network (Atari Ping Pong), see `tutorial_atari_pong.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_atari_pong.py>`_.
- Deep Q-Network (Frozen lake), see `tutorial_frozenlake_dqn.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_frozenlake_dqn.py>`_.
- Q-Table learning algorithm (Frozen lake), see `tutorial_frozenlake_q_table.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_frozenlake_q_table.py>`_.
- Asynchronous Policy Gradient using TensorDB (Atari Ping Pong) by `nebulaV <https://github.com/akaraspt/tl_paper>`_.
- AC for discrete action space (Cartpole), see `tutorial_cartpole_ac.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cartpole_ac.py>`_.
- A3C for continuous action space (Bipedal Walker), see `tutorial_bipedalwalker_a3c*.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_bipedalwalker_a3c_continuous_action.py>`_.
- `DAGGER <https://www.cs.cmu.edu/%7Esross1/publications/Ross-AIStats11-NoRegret.pdf>`_ for (`Gym Torcs <https://github.com/ugo-nama-kun/gym_torcs>`_) by `zsdonghao <https://github.com/zsdonghao/Imitation-Learning-Dagger-Torcs>`_.
- `TRPO <https://arxiv.org/abs/1502.05477>`_ for continuous and discrete action space by `jjkke88 <https://github.com/jjkke88/RL_toolbox>`_.
- Policy Gradient / Network (Atari Ping Pong), see `tutorial_atari_pong.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_atari_pong.py>`__.
- Deep Q-Network (Frozen lake), see `tutorial_frozenlake_dqn.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_frozenlake_dqn.py>`__.
- Q-Table learning algorithm (Frozen lake), see `tutorial_frozenlake_q_table.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_frozenlake_q_table.py>`__.
- Asynchronous Policy Gradient using TensorDB (Atari Ping Pong) by `nebulaV <https://github.com/akaraspt/tl_paper>`__.
- AC for discrete action space (Cartpole), see `tutorial_cartpole_ac.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cartpole_ac.py>`__.
- A3C for continuous action space (Bipedal Walker), see `tutorial_bipedalwalker_a3c*.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_bipedalwalker_a3c_continuous_action.py>`__.
- `DAGGER <https://www.cs.cmu.edu/%7Esross1/publications/Ross-AIStats11-NoRegret.pdf>`__ for (`Gym Torcs <https://github.com/ugo-nama-kun/gym_torcs>`__) by `zsdonghao <https://github.com/zsdonghao/Imitation-Learning-Dagger-Torcs>`__.
- `TRPO <https://arxiv.org/abs/1502.05477>`__ for continuous and discrete action space by `jjkke88 <https://github.com/jjkke88/RL_toolbox>`__.

Pretrained Models
==================

- VGG 16 (ImageNet). Classification task, see `tl.models.VGG16 <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_models_vgg16.py>`__ or `tutorial_vgg16.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg16.py>`_.
- VGG 19 (ImageNet). Classification task, see `tutorial_vgg19.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg19.py>`_.
- InceptionV3 (ImageNet). Classification task, see `tutorial_inceptionV3_tfslim.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py>`_.
- SqueezeNet (ImageNet). Model compression, see `tl.models.SqueezeNetV1 <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_models_squeezenetv1.py>`__ or `tutorial_squeezenet.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_squeezenet.py>`_.
- VGG 16 (ImageNet). Classification task, see `tl.models.VGG16 <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_models_vgg16.py>`__ or `tutorial_vgg16.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg16.py>`__.
- VGG 19 (ImageNet). Classification task, see `tutorial_vgg19.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg19.py>`__.
- InceptionV3 (ImageNet). Classification task, see `tutorial_inceptionV3_tfslim.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py>`__.
- SqueezeNet (ImageNet). Model compression, see `tl.models.SqueezeNetV1 <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_models_squeezenetv1.py>`__ or `tutorial_squeezenet.py <https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_squeezenet.py>`__.
- MobileNet (ImageNet). Model compression, see `tl.models.MobileNetV1 <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_models_mobilenetv1.py>`__ or `tutorial_mobilenet.py <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mobilenet.py>`__.
- More CNN implementations of `TF-Slim <https://github.com/tensorflow/models/tree/master/research/slim>`_ can be connected to TensorLayer via SlimNetsLayer.
- All pretrained models in `pretrained-models <https://github.com/tensorlayer/pretrained-models>`_.
- More CNN implementations of `TF-Slim <https://github.com/tensorflow/models/tree/master/research/slim>`__ can be connected to TensorLayer via SlimNetsLayer.
- All pretrained models in `pretrained-models <https://github.com/tensorlayer/pretrained-models>`__.

Miscellaneous
=================

- TensorDB by `fangde <https://github.com/fangde>`_ see `tl_paper <https://github.com/akaraspt/tl_paper>`_.
- A simple web service - `TensorFlask <https://github.com/JoelKronander/TensorFlask>`_ by `JoelKronander <https://github.com/JoelKronander>`__.
- TensorDB by `fangde <https://github.com/fangde>`__ see `tl_paper <https://github.com/akaraspt/tl_paper>`__.
- A simple web service - `TensorFlask <https://github.com/JoelKronander/TensorFlask>`__ by `JoelKronander <https://github.com/JoelKronander>`__.

..
Applications
Expand All @@ -95,7 +96,7 @@ Miscellaneous
1D CNN + LSTM for Biosignal
---------------------------------

Author : `Akara Supratak <https://akaraspt.github.io>`_
Author : `Akara Supratak <https://akaraspt.github.io>`__

Introduction
^^^^^^^^^^^^
Expand Down