The predict() method for that model's object is a simple wrapper:
> kknn:::predict.train.kknn
function (object, newdata, ...)
{
if (missing(newdata))
return(predict(object, ...))
res <- kknn(formula(terms(object)), object$data, newdata,
k = object$best.parameters$k, kernel = object$best.parameters$kernel,
distance = object$distance)
return(predict(res, ...))
}
We should have a wrapper that parameterizes k.