[Accepted to WACV 2026] NavMapFusion: Diffusion-based Fusion of Navigation Maps for Online Vectorized HD Map Construction
This repository is the official implementation of NavMapFusion. The code will be released soon. Stay tuned!
Step 1. Create conda environment and activate it.
conda create --name navmapfusion python=3.8 -y
conda activate navmapfusion
Step 2. Install PyTorch.
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
Step 3. Install MMCV series.
# Install mmcv-series
pip install mmcv-full==1.6.0
pip install mmdet==2.28.2
pip install mmsegmentation==0.30.0
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
git checkout v1.0.0rc6
pip install -e .
Step 4. Install other requirements.
pip install -r requirements.txt
Step 1. Download NuScenes dataset to ./datasets/nuScenes.
Step 2. Generate annotation files for NuScenes dataset.
python tools/nuscenes_converter.py --data-root ./datasets/nuScenes --newsplit
Step 3. Prepare Navigation Map (OSM) Data.
We follow P-MapNet to prepare the OpenStreetMap data.
Please download the pre-processed data and place it in ./datasets/osm.
To train a model with 8 GPUs:
bash tools/dist_train.sh ${CONFIG} 8
To validate a model with 8 GPUs, an
bash tools/dist_test.sh ${CONFIG} ${CEHCKPOINT} 8 --eta=0.5 --sampling_timesteps=5 --query_threshold=0.5 --eval
| Model | Config | Epoch | ||||
|---|---|---|---|---|---|---|
| StreamMapNet | 24.8 | 18.4 | 25.6 | 22.9 | Config | 24 |
| StreamMapNet-MCA | 28.4 | 22.2 | 27.8 | 26.1 | Config | 24 |
| MapDiffusion | 23.4 | 21.6 | 22.2 | 22.4 | Config | 24 |
| NavMapFusion | 32.1 | 20.7 | 28.9 | 27.2 | Config | 24 |
If you find our paper or codebase useful in your research, please give us a star and cite our paper.
@article{monninger2025navmapfusion,
title = {NavMapFusion: Diffusion-based Fusion of Navigation Maps for Online Vectorized HD Map Construction},
author = {Monninger, Thomas and Zhang, Zihan and Staab, Steffen and Ding, Sihao},
journal = {arXiv preprint arXiv:2512.03317},
year = {2025},
}
We sincerely thank the open-sourcing of these works where our code is based on: StreamMapNet, P-MapNet.